Complications in Canine Cranial Cruciate Ligament Surgery. Ron Ben-Amotz
Читать онлайн книгу.Brown, G., Maddox, T., and Siles, M.M.B. (2016). Client‐assessed long‐term outcome in dogs with surgical site infection following tibial plateau levelling osteotomy. Vet. Rec. 179: 409.
24 24. Livet, V., Taroni, M., Ferrand, F.‐X. et al. (2019). Modified triple tibial osteotomy for combined cranial cruciate ligament rupture, tibial deformities, or patellar luxation. J. Am. Anim. Hosp. Assoc. 55: 291–300.
25 25. Frederick, S.W. and Cross, A.R. (2017). Modified cranial closing wedge osteotomy for treatment of cranial cruciate ligament insufficiency in dogs with excessive tibial plateau angles: technique and complications in 19 cases. Vet. Surg. 46: 403–411.
26 26. De Sousa, R., Egan, P., Parsons, K. et al. (2017). Treatment of tibial diaphyseal fractures following plateless tibial tuberosity advancement to manage cranial cruciate disease. J. Small Anim. Pract. 58: 372–379.
27 27. Lopez, D.J., VanDeventer, G.M., Krotscheck, U. et al. (2018). Retrospective study of factors associated with surgical site infection in dogs following tibial plateau leveling osteotomy. J. Am. Vet. Med. Assoc. 253 (3): 315–321.
28 28. Giannetto, J.J. and Aktay, S.A. (2019). Prospective evaluation of surgical wound dressings and the incidence of surgical site infections in dogs undergoing a tibial plateau levelling osteotomy. Vet. Comp. Orthop. Traumatol. 32: 18–25.
29 29. Spencer, D.D. and Daye, R.M. (2018). A prospective, randomized, double‐blinded, placebo‐controlled clinical study on postoperative antibiotherapy in 150 arthroscopy‐assisted tibial plateau leveling osteotomies in dogs. Vet. Surg. 47: E79–E87.
30 30. Atwood, C., Maxwell, M., Butler, R., and Wills, R. (2015). Effects of incision closure method on infection prevalence following tibial plateau leveling osteotomy in dogs. Can. Vet. J. 56: 375–381.
31 31. Savicky, R., Beale, B., Murtaugh, R. et al. (2013). Outcome following removal of TPLO implants with surgical site infection. Vet. Comp. Orthop. Traumatol. 26: 260–265.
32 32. Etter, S.W., Ragetly, G.R., Bennett, R.A., and Schaeffer, D.J. (2013). Effect of using triclosan‐impregnated suture for incisional closure on surgical site infection and inflammation following tibial plateau leveling osteotomy in dogs. J. Am. Vet. Med. Assoc. 242: 355–358.
33 33. Gallagher, A.D. and Mertens, W.D. (2012). Implant removal rate from infection after tibial plateau leveling osteotomy in dogs. Vet. Surg. 41: 705–711.
34 34. Thompson, A.M., Bergh, M.S., Wang, C., and Wells, K. (2011). Tibial plateau levelling osteotomy implant removal: a retrospective analysis of 129 cases. Vet. Comp. Orthop. Traumatol. 24: 450–456.
35 35. van Rijen, M., Bonten, M., Wenzel, R., and Kluytmans, J. (2008). Intranasal mupirocin for reduction of Staphylococcus aureus infections in surgical patients with nasal carriage: a systematic review. J. Antimicrob. Chemother. 61 (2): 254–261.
36 36. Thompson, P. and Houston, S. (2013). Decreasing methicillin‐resistant Staphylococcus aureus surgical site infections with chlorhexidine and mupirocin. Am. J. Infect. Control. 41 (7): 629–633.
37 37. Rao, N., Cannella, B., Crossett, L. et al. (2011). Preoperative screening/decolonization for Staphylococcus aureus to prevent orthopedic surgical site infection: prospective cohort study with 2‐year follow‐up. J. Arthroplasty 26 (8): 1501–1507.
38 38. Courville, X., Tomek, I., Kirkland, K. et al. (2012). Cost‐effectiveness of preoperative nasal mupirocin treatment in preventing surgical site infection in patients undergoing total hip and knee arthroplasty: a cost‐effectiveness analysis. Infect. Control Hosp. Epidemiol. 33 (2): 152–159.
39 39. Diribe, O., Thomas, S., AbuOun, M. et al. (2015). Genotypic relatedness and characterization of Staphylococcus pseudintermedius associated with post‐operative surgical infections in dogs. J. Med. Microbiol. 64: 1074–1081.
40 40. Borio, S., Colombo, S., La Rosa, G. et al. (2015). Effectiveness of a combined (4% chlorhexidine digluconate shampoo and solution) protocol in MRS and non‐MRS canine superficial pyoderma: a randomized, blinded, antibiotic‐controlled study. Vet. Dermatol. 26: 339–e72.
41 41. Mayhew, P.D., Freeman, L., Kwan, T., and Brown, D.C. (2012). Comparison of surgical site infection rates in clean and clean‐contaminated wounds in dogs and cats after minimally invasive versus open surgery: 179 cases (2007–2008). J. Am. Vet. Med. Assoc. 240 (2): 193–198.
42 42. Brown, D.C., Conzemius, M., Shofer, F., and Swann, H. (1997). Epidemiologic evaluation of postoperative wound infections in dogs and cats. J. Am. Vet. Med. Assoc. 210 (9): 1302–1306.
43 43. Berrios‐Torres, S., Umscheid, C., Bratzler, D. et al. (2017). Centers for Disease Control and Prevention guideline for the prevention of surgical site infection. J. Am. Med. Assoc. Surg. 152 (8): 784–791.
44 44. World Health Organization (2016). Global Guidelines for the Prevention of Surgical Site Infection. Geneva: WHO.
45 45. Belo, L., Serrano, I., Cunha, E. et al. (2018). Skin asepsis protocols as a preventive measure of surgical site infections in dogs: chlorhexidine – alcohol versus povidone‐iodine. BMC Vet. Res. 14 (95): 1–6.
46 46. Melekwe, G.O., Uwagie‐Ero, E.A., Zoaka, H.A., and Odigie, E.A. (2018). Comparative clinical effectiveness of preoperative skin antiseptic preparations of chlorhexidine gluconate and povidone iodine for preventing surgical site infections in dogs. Int. J. Vet. Sci. Med. 6 (1): 113–116.
47 47. Andrade, N., Schmiedt, C.W., Cornell, K. et al. (2016). Survey of intraoperative bacterial contamination in dogs undergoing elective orthopedic surgery. Vet. Surg. 45: 214–222.
48 48. Straw, R.C., Tomlinson, J.L., and Fales, W.H. (1987). Scalpel blade contamination with skin bacteria during orthopedic and neurosurgical procedures in dogs. Vet. Surg. 16: 25–30.
49 49. Lioce, C.G., Davis, E.C., Bennett, J.W. et al. (2019). Scalpel blade contamination and risk of postoperative surgical site infection following abdominal incisions in dogs. BMC Res. Notes 12: 459.
50 50. Belo, L., Serrano, I., Cunha, E. et al. (2020). Surgical blades as bacteria dissemination vehicles in dogs undergoing surgery −a pilot study. Biomed. Eng. Int. 2 (1): 25–29.
51 51. Sturgeon, C., Lamport, A.I., Lloyd, D.H., and Muir, P. (2000). Bacterial contamination of suction tips used during surgical procedures performed on dogs and cats. Am. J. Vet. Res. 61 (7): 779–783.
52 52. Medl, N., Guerrero, T.G., Holzle, L. et al. (2012). Intraoperative contamination of the suction tip in clean orthopedic surgeries in dogs and cats. Vet. Surg. 41: 254–260.
53 53. Weese, J.S. (2008). A review of post‐operative infections in veterinary orthopaedic surgery. Vet. Comp. Orthop. Traumatol. 21: 99–105.
54 54. Feßler, A.T., Schuenemann, R., Kadlec, K. et al. (2018). Methicillin‐resistant Staphylococcus aureus (MRSA) and methicillin‐resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital. Vet. Microbiol. 221: 153–158.
55 55. Larson, E. (1995). APIC guidelines for handwashing and hand antisepsis in health care settings. Am. J. Infect. Control 23 (4): 251–269.
56 56. Verwilghen, D.R., Mainil, J., Mastrocicco, E. et al. (2011). Surgical hand antisepsis in veterinary practice: evaluation of soap scrubs and alcohol based rub techniques. Vet. J. 190 (3): 372–377.
57 57. Parienti, J.J., Thibon, P., Heller, R. et al. (2002). Hand‐rubbing with an aqueous alcoholic solution vs traditional surgical hand‐scrubbing and 30‐day surgical site infection rates. J. Am. Med. Assoc. 288 (6): 722–727.
58 58. Hingst, V., Juditzki, I., Heeg, P., and Sonntag, H.‐G. (1992). Evaluation of the efficacy of surgical hand disinfection following a reduced application time of 3 instead of 5 minutes. J. Hosp. Infect. 20 (2): 79–86.
59 59. Verwilghen, D. and Kampf, G. (2016). Letter to the editor: antibacterial efficacy of several surgical hand preparation products used by veterinary students. Vet. Surg. 45: 1118–1119.
60 60. Hübner, N., Kampf, G., Kamp, P. et al. (2006). Does a preceding hand wash and drying time