.
Читать онлайн книгу.не только запоминать, но и забывать, т. е. использующая для прогнозирования лишь недавний опыт, может адаптироваться к изменяющимся условиям. В частности, ее прогнозирование достаточно для выработки классического условного рефлекса и его угашения. Но недостатки в прогнозировании такой системы еще весьма существенны.
При таком обращении к прошлому опыту весьма важен вопрос о рациональном выборе числа N. При N=1 прогноз носит не вероятностный, а жестко детерминированный характер: всегда предсказывается с вероятностью Р = 1 (однозначно) то событие, которое в последний раз следовало за событием А. При N=1 хорошее прогнозирование будет обеспечено только в том случае, если вслед за А всегда следует одно и то же событие. Однако такая ситуация встречается разве лишь в хорошо поставленном эксперименте по выработке условных рефлексов.
При маленьком N система окажется очень «доверчивой» в своем прогнозе; влияние на прогноз случайного, но недавно встретившегося события будет значительным; система будет быстро менять прогноз даже под влиянием случайных изменений среды. При слишком большом N модель, наоборот, окажется слишком «косной» в своем прогнозе, недостаточно чуткой к изменениям вероятностных характеристик среды. Если N равно числу всех карточек в ящике (т. е. модель обладает «бесконечно большой» памятью – в пределах всей ее жизни), то вероятностный прогноз будет достаточно хорошим лишь до тех пор, пока будут оставаться стабильными вероятностные характеристики «среды обитания» модели. Если вероятностная структура среды изменится, модель начнет выдавать неверные прогнозы и будет медленно приспосабливаться к новой среде.
Как видим, вероятностный прогноз оказывается неточным как при слишком малом N («доверчивая» модель), так и при слишком большом N («косная» модель). Рациональный выбор N зависит от того, в какой среде работает модель, как быстро меняются вероятностные характеристики этой среды.
Описанный выше вариант памяти носит характер «все или ничего»: начиная с какого-то момента все события помнятся одинаково хорошо, более же ранние события как бы нацело вычеркнуты из памяти.
Можно усложнить характер забывания в нашей модели. Пусть карточки в картотеке имеют некоторый «весовой коэффициент давности» события: лучше помнится то, что было недавно. Первые N1карточек, стоящие в ящике (недавние события), имеют коэффициент a1. Следующие N2 карточек (более давние события) имеют коэффициент а, меньший чем а. Следующие N3 карточек (еще более давние события) имеют еще меньший коэффициент а3 и т. д.
В величину вероятностного прогноза события В при условии, что непосредственно перед тем было А, входят: доля карточек В среди первых N1 карточек в ящике А с коэффициентом а1, доля карточек В среди следующих N2 карточек в ящике А с коэффициентом а2, доля карточек В среди следующих N3 карточек в ящике А с коэффициентом а3 и т. д. Вероятность того, что наступит событие В при условии, что произошло