Nanotechnology in Plant Growth Promotion and Protection. Группа авторов
Читать онлайн книгу.(2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics 1 (4): 282–285.
10 Cai, F., Wu, X., Zhang, H. et al. (2017). Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact 5: 101–108.
11 Carlotti, M.E., Ugazio, E., Sapino, S. et al. (2009). Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radical Research 43 (3): 312–322.
12 Clément, L., Hurel, C., and Marmier, N. (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere 90 (3): 1083–1090.
13 CODATA‐VAMAS Working Group on the Description of Nanomaterials & Rumble, J. (2016). Uniform Description System for Materials on the Nanoscale, Version 2.0. http://doi.org/10.5281/zenodo.56720.
14 Cox, A., Venkatachalam, P., Sahi, S., and Sharma, N. (2016). Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiology and Biochemistry 107: 147–163.
15 Dalai, S., Pakrashi, S., Nirmala, M.J. et al. (2013). Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology 138–139: 1–11.
16 Demir, E., Kaya, N., and Kaya, B. (2014). Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology 38 (1): 31–39.
17 Dias, M.C., Santos, C., Pinto, G. et al. (2019). Titanium dioxide nanoparticles impaired both photochemical and non‐photochemical phases of photosynthesis in wheat. Protoplasma 256 (1): 69–78.
18 Du, W., Sun, Y., Ji, R. et al. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring 13 (4): 822–828.
19 Fan, R., Huang, Y.C., Grusak, M.A. et al. (2014). Effects of nano‐TiO2 on the agronomically‐relevant rhizobium–legume symbiosis. Science of the Total Environment 466–467: 503–512.
20 Faraz, A., Faizan, M., Fariduddin, Q., and Hayat, S. (2020). Response of titanium nanoparticles to plant growth: agricultural perspectives. In: Sustainable Agriculture Reviews, vol. 41 (eds. S. Hayat, J. Pichtel, M. Faizan and Q. Fariduddin), 101–110. Cham: Springer.
21 Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., and Fotovat, A. (2012). Impact of bulk and Nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146 (1): 101–106.
22 Feizi, H., Amirmoradi, S., Abdollahi, F., and Pour, S.J. (2013a). Comparative effects of Nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Research & Review in Biology 3 (4): 814–824.
23 Feizi, H., Kamali, M., Jafari, L., and Rezvani Moghaddam, P. (2013b). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare mill). Chemosphere 91 (4): 506–511.
24 Foltête, A.‐S., Masfaraud, J.‐F., Bigorgne, E. et al. (2011). Environmental impact of sunscreen nanomaterials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution 159 (10): 2515–2522.
25 Frazier, T.P., Burklew, C.E., and Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics 14 (1): 75–83.
26 Gao, F., Liu, C., Qu, C. et al. (2008). Was improvement of spinach growth by nano‐TiO2 treatment related to the changes of Rubisco activase? Biometals 21 (2): 211–217.
27 Gavazov, K.B., Hagarová, I., Halko, R., and Andruch, V. (2019). Recent advances in the application of nanoparticles in cloud point extraction. Journal of Molecular Liquids 281: 93–99.
28 George, J.M., Antony, A., and Mathew, B. (2018). Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta 185 (7): 358.
29 Ghosh, M., Bandyopadhyay, M., and Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81 (10): 1253–1262.
30 Giorgetti, L., Spanò, C., Muccifora, S. et al. (2019). An integrated approach to highlight biological responses of Pisum sativum root to nano‐TiO2 exposure in a biosolid‐amended agricultural soil. Science of the Total Environment 650: 2705–2716.
31 Gong, J., Sumathy, K., Qiao, Q., and Zhou, Z. (2017). Review on dye‐sensitized solar cells (DSSCs): advanced techniques and research trends. Renewable and Sustainable Energy Reviews 68: 234–246.
32 Guan, H., Chi, D., Yu, J., and Li, H. (2010). Dynamics of residues from a novel nano‐imidacloprid formulation in soyabean fields. Crop Protection 29 (9): 942–946.
33 Hagarová, I. (2017). Separation and quantification of metallic nanoparticles using cloud point extraction and spectrometric methods: a brief review of latest applications. Analytical Methods 9 (24): 3594–3601.
34 Hagarová, I. (2018). Current trends in cloud point extraction – utilizable in ultratrace analysis of metallic ions and metallic nanoparticles. Chemicke Listy 112 (2): 79–85.
35 Hagarová, I., Matúš, P., Bujdoš, M., and Kubová, J. (2012a). Analytical application of nano‐sized titanium dioxide for the determination of trace inorganic antimony in natural waters. Acta Chimica Slovenica 59 (1): 102–108.
36 Hagarová, I., Bujdoš, M., Matúš, P., and Čanecká, L. (2012b). The use of two extraction procedures in connection with electrothermal atomic absorption spectrometry for speciation of inorganic antimony in natural waters. Chemicke Listy 106 (2): 136–142.
37 Hagarová, I., Bujdoš, M., and Matúš, P. (2012c). Platinum removal from aqueous solutions by sorption onto titanium dioxide. Fresenius Environmental Bulletin 21 (11c): 3568–3574.
38 Hagarová, I., Bujdoš, M., and Matúš, P. (2013). The use of titanium dioxide for separation/preconcentration of aluminium, antimony and platinum species in synthetic and natural waters before their determination by atomic spectrometry methods. In: Titanium Dioxide: Applications, Synthesis and Toxicity (ed. P.K. Jha), 167–209. New York: Nova Science Publishers, Inc.
39 Haghighi, M. and Teixeira da Silva, J.A. (2014). The effect of N‐TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology 17 (4): 221–227.
40 Han, C., Lalley, J., Namboodiri, D. et al. (2016). Titanium dioxide‐based antibacterial surfaces for water treatment. Current Opinion in Chemical Engineering 11: 46–51.
41 Hong, F., Zhou, J., Liu, C. et al. (2005). Effect of nano‐TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research 105 (1): 269–279.
42 Hsiao, I.‐L. and Huang, Y.‐J. (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Science of the Total Environment 409 (7): 1219–1228.
43 Hylmö, B. (1955). Passive components in the ion absorption of the plant. I. The zonal ion and water absorption in Brouwer's experiments. Physiologia Plantarum 8 (2): 433–449.
44 Hylmö, B. (1958). Passive components in the ion absorption of the plant II. The zonal water flow, ion passage, and pore size in roots of Vicia Faba. Physiologia Plantarum 11 (2): 382–400.
45 Iswarya, V., Bhuvaneshwari, M., Alex, S.A. et al. (2015). Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: chlorella sp. Aquatic Toxicology 161: 154–169.
46 Jaberzadeh, A., Moaveni, P., Tohidi Moghadam, H.R., and Zahedi, H. (2013). Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj‐Napoca 41 (1): 201–207.
47 Jarosz, M., Pawlik, A., Szuwarzyński,