Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic
Читать онлайн книгу.upper T Baseline normal e right-parenthesis Over partial-differential w Subscript italic i j Superscript l Baseline EndFraction equals StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential s Subscript j Superscript l Baseline EndFraction StartFraction partial-differential s Subscript j Superscript l Baseline Over partial-differential w Subscript italic i j Superscript l Baseline EndFraction equals delta Subscript j Superscript i Baseline a Subscript i Superscript l minus 1 Baseline comma"/>
with
Parameters δ are derived recursively starting from the output layer:
where f ′
(3.10)
Substituting into Eq. (3.9) yields
To calculate the δ′ s, we note that eTe is influenced through
(3.11)
with
(3.12)
Recalling that
(3.14)
For the bias weight