Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн книгу.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic


Скачать книгу
upper T Baseline normal e right-parenthesis Over partial-differential w Subscript italic i j Superscript l Baseline EndFraction equals StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential s Subscript j Superscript l Baseline EndFraction StartFraction partial-differential s Subscript j Superscript l Baseline Over partial-differential w Subscript italic i j Superscript l Baseline EndFraction equals delta Subscript j Superscript i Baseline a Subscript i Superscript l minus 1 Baseline comma"/>

      with delta Subscript j Superscript i Baseline equals partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis slash partial-differential s Subscript j Superscript l leading to the weight update normal upper Delta w Subscript italic i j Superscript l Baseline equals minus mu delta Subscript j Superscript l Baseline a Subscript i Superscript l minus 1.

      Parameters δ are derived recursively starting from the output layer:

      where fleft-parenthesis s Subscript i Superscript upper L Baseline right-parenthesis is the derivative of the sigmoid function of s. We have also used for the output layer y Subscript j Baseline equals a Subscript j Superscript upper L. With this, at the output layer, each neuron has an explicit desired response, so we can write

      (3.10)StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential y Subscript j Baseline EndFraction equals StartFraction partial-differential e Subscript j Superscript 2 Baseline Over partial-differential y Subscript j Baseline EndFraction equals 2 e Subscript j Baseline StartFraction partial-differential left-parenthesis d Subscript j Baseline minus y Subscript j Baseline right-parenthesis Over partial-differential y Subscript j Baseline EndFraction equals minus 2 e Subscript j Baseline period

      (3.11)delta Subscript i Superscript l Baseline equals StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential s Subscript i Superscript l Baseline EndFraction equals sigma-summation Underscript j Endscripts left-parenthesis StartFraction partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis Over partial-differential s Subscript j Superscript l plus 1 Baseline EndFraction right-parenthesis left-parenthesis StartFraction partial-differential s Subscript j Superscript l plus 1 Baseline Over partial-differential s Subscript i Superscript l Baseline EndFraction right-parenthesis

      with

      (3.12)StartFraction partial-differential s Subscript j Superscript l plus 1 Baseline Over partial-differential s Subscript i Superscript l Baseline EndFraction equals left-parenthesis StartFraction partial-differential s Subscript j Superscript l plus 1 Baseline Over partial-differential a Subscript i Superscript l Baseline EndFraction right-parenthesis left-parenthesis StartFraction partial-differential a Subscript i Superscript l Baseline Over partial-differential s Subscript i Superscript l Baseline EndFraction right-parenthesis equals w Subscript italic i j Superscript l Baseline 1 Baseline f prime left-parenthesis s Subscript i Superscript l Baseline right-parenthesis period

      Recalling that partial-differential left-parenthesis normal e Superscript upper T Baseline normal e right-parenthesis slash partial-differential s Subscript j Superscript l plus 1 Baseline equals delta Subscript j Superscript l plus 1, we get delta Subscript j Superscript i Baseline equals f prime left-parenthesis s Subscript i Superscript l Baseline right-parenthesis sigma-summation Underscript j Endscripts delta Subscript j Superscript i plus 1 Baseline w Subscript italic i j Superscript l plus 1 Baseline period In summary, we have

      (3.14)delta Subscript i Superscript l Baseline equals StartLayout Enlarged left-brace 1st Row 1st Column minus 2 e Subscript i Baseline f prime left-parenthesis s Subscript i Superscript upper L Baseline right-parenthesis 2nd Column l equals upper L 2nd Row 1st Column f prime left-parenthesis s Subscript i Superscript l Baseline right-parenthesis dot sigma-summation Underscript j Endscripts delta Subscript j Superscript i plus 1 Baseline period w Subscript italic i j Superscript l plus 1 Baseline 2nd Column 1 less-than-or-equal-to l less-than-or-equal-to upper L minus 1 comma EndLayout