Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн книгу.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic


Скачать книгу
l plus 1 Baseline 2nd Row 1st Column 0 2nd Column otherwise period EndLayout"/>

      (3.31)StartLayout 1st Row delta Subscript j Superscript l Baseline left-parenthesis k right-parenthesis equals f prime left-parenthesis s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis right-parenthesis sigma-summation Underscript m Endscripts sigma-summation Underscript t equals k Overscript upper A Endscripts delta Subscript m Superscript l plus 1 Baseline left-parenthesis t right-parenthesis w Subscript italic j m Superscript l plus 1 Baseline left-parenthesis t minus k right-parenthesis semicolon upper A equals upper M Superscript l plus 1 Baseline plus k 2nd Row equals f prime left-parenthesis s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis right-parenthesis sigma-summation Underscript m Endscripts sigma-summation Underscript n equals 0 Overscript upper B Endscripts delta Subscript m Superscript l plus 1 Baseline left-parenthesis k plus n right-parenthesis w Subscript italic j m Superscript l plus 1 Baseline left-parenthesis n right-parenthesis semicolon upper B equals upper M Superscript l plus 1 Baseline 3rd Row equals f prime left-parenthesis s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis right-parenthesis sigma-summation Underscript m Endscripts delta Subscript m Superscript l plus 1 Baseline left-parenthesis k right-parenthesis normal w Subscript italic j m Superscript l plus 1 Baseline comma EndLayout

      where we have defined the vector

      (3.32)delta Subscript m Superscript l Baseline left-parenthesis k right-parenthesis equals left-bracket delta Subscript m Superscript l Baseline left-parenthesis k right-parenthesis comma delta Subscript m Superscript l Baseline left-parenthesis k plus 1 right-parenthesis comma ellipsis comma delta Subscript m Superscript l Baseline left-parenthesis k plus upper M Superscript l Baseline right-parenthesis right-bracket period

Schematic illustration of temporal backpropagation.

      (3.34)delta Subscript j Superscript i Baseline left-parenthesis k right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column minus 2 e Subscript j Baseline left-parenthesis k right-parenthesis f prime left-parenthesis s Subscript j Superscript upper L Baseline left-parenthesis k right-parenthesis right-parenthesis 2nd Column l equals upper L 2nd Row 1st Column f prime left-parenthesis s Subscript j Superscript l Baseline left-parenthesis k right-parenthesis right-parenthesis dot sigma-summation Underscript m Endscripts delta Subscript m Superscript l plus 1 Baseline left-parenthesis k right-parenthesis period normal w Subscript italic j m Superscript l plus 1 Baseline 2nd Column 1 less-than-or-equal-to l less-than-or-equal-to upper L minus 1 period EndLayout

      The symmetry between the forward propagation of states and the backward propagation of error terms is preserved in temporal backpropagation. The number of operations per iteration now grows linearly with the number of layers and synapses in the network. This savings is due to the efficient recursive formulation. Each coefficient enters into the calculation only once, in contrast to the redundant use of terms when applying standard backpropagation to the unfolded network.

      Design Example 3.1

      (3.35)u left-parenthesis k right-parenthesis equals sigma-summation Underscript i equals 0 Overscript upper M Endscripts a Subscript i Baseline x left-parenthesis k minus i right-parenthesis equals italic a x left-parenthesis k right-parenthesis period

      For simplicity, the second segment is limited to only three taps:

      (3.36)y left-parenthesis k right-parenthesis equals b 0 u left-parenthesis k right-parenthesis plus b 1 u left-parenthesis k minus 1 right-parenthesis plus b 2 u left-parenthesis k minus 2 right-parenthesis equals italic b u left-parenthesis k right-parenthesis period

Schematic illustration of oversimplified finite impulse response (FIR) network.

      Here ( a is the vector of filter coefficient and should not be confused with the variable for the activation value used earlier). To adapt the filter coefficients, we evaluate the gradients ∂e2(k)/∂a and ∂e2(k)/∂b. For filter b, the desired response is available directly at the output of the filter of interest and the gradient is Скачать книгу