Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн книгу.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic


Скачать книгу
(3.48) is simplified to yield an autoregressive (AR(p)) filter

      (3.51)upper H left-parenthesis z right-parenthesis equals StartFraction upper Y left-parenthesis z right-parenthesis Over upper E left-parenthesis z right-parenthesis EndFraction equals StartFraction b 0 plus b 1 z Superscript negative 1 Baseline plus dot dot dot dot dot plus b Subscript q Baseline z Superscript negative q Baseline Over 1 minus a 1 z Superscript negative 1 Baseline minus dot dot dot dot minus a Subscript p Baseline z Superscript negative p Baseline EndFraction equals StartFraction upper N left-parenthesis z right-parenthesis Over upper D left-parenthesis z right-parenthesis EndFraction period

      To guarantee stability, the p roots of the denominator polynomial of (z), that is, the values of z for which D(z) = 0, the poles of the transfer function, must lie within the unit circle in the z‐plane, ∣z ∣ < 1.

      Nonlinear predictors: If a measurement is assumed to be generated by an ARMA (p, q) model, the optimal conditional mean predictor of the discrete time random signal {y(k)}

      (3.52)ModifyingAbove y With ampersand c period circ semicolon left-parenthesis k right-parenthesis equals upper E left-bracket y left-parenthesis k right-parenthesis bar y left-parenthesis k minus 1 right-parenthesis comma y left-parenthesis k minus 2 right-parenthesis comma ellipsis comma y left-parenthesis 0 right-parenthesis right-bracket

      is given by

      The corresponding NARMA (p, q) predictor is given by

      (3.55)ModifyingAbove y With ampersand c period circ semicolon left-parenthesis k right-parenthesis equals upper Theta left-parenthesis sigma-summation Underscript i equals 1 Overscript p Endscripts a Subscript i Baseline y left-parenthesis k minus i right-parenthesis plus sigma-summation Underscript j equals 1 Overscript q Endscripts b Subscript j Baseline ModifyingAbove e With ampersand c period circ semicolon left-parenthesis k minus j right-parenthesis right-parenthesis comma

      where the residuals ê left-parenthesis k minus j right-parenthesis equals y left-parenthesis k minus j right-parenthesis minus ModifyingAbove y With ampersand c period circ semicolon left-parenthesis k minus j right-parenthesis comma j = 1, 2, … , q. Equivalently, the simplest form of nonlinear autoregressive (NAR(p)) model is described by

      (3.56)y left-parenthesis k right-parenthesis equals upper Theta left-parenthesis sigma-summation Underscript i equals 1 Overscript p Endscripts a Subscript i Baseline y left-parenthesis k minus i right-parenthesis right-parenthesis plus e left-parenthesis k right-parenthesis

      and its associated predictor is

      (3.57)ModifyingAbove y With ampersand c period circ semicolon left-parenthesis k right-parenthesis equals upper Theta left-parenthesis sigma-summation Underscript ModifyingAbove i With ampersand c period dotab semicolon equals 1 Overscript p Endscripts a Subscript i Baseline y left-parenthesis k minus i right-parenthesis right-parenthesis period

Schematic illustration of nonlinear AR/ARMA predictors.

      and referred to as a NARMA


Скачать книгу