Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн книгу.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic


Скачать книгу
x Superscript l Baseline right-parenthesis right-parenthesis v e c left-parenthesis upper F right-parenthesis right-parenthesis Over partial-differential left-parenthesis v e c left-parenthesis upper F right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction equals upper I circled-times normal phi left-parenthesis x Superscript l Baseline right-parenthesis period"/>

      We have used the fact that ∂XaT/∂a = X or ∂Xa/∂aT = X so long as the matrix multiplications are well defined. This equation leads to

      (3.93)StartFraction partial-differential z Over partial-differential left-parenthesis v e c left-parenthesis upper F right-parenthesis right-parenthesis Superscript upper T Baseline EndFraction equals StartFraction partial-differential z Over partial-differential left-parenthesis v e c left-parenthesis y right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction left-parenthesis upper I circled-times normal phi left-parenthesis x Superscript l Baseline right-parenthesis right-parenthesis period

      Taking the transpose, we get

      (3.94)StartLayout 1st Row StartFraction partial-differential z Over partial-differential v e c left-parenthesis upper F right-parenthesis EndFraction equals left-parenthesis upper I circled-times normal phi left-parenthesis x Superscript l Baseline right-parenthesis right-parenthesis Superscript upper T Baseline StartFraction partial-differential z Over partial-differential v e c left-parenthesis y right-parenthesis EndFraction equals left-parenthesis upper I circled-times normal phi left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline right-parenthesis v e c left-parenthesis StartFraction partial-differential z Over partial-differential upper Y EndFraction right-parenthesis 2nd Row equals v e c left-parenthesis normal phi left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline StartFraction partial-differential z Over partial-differential upper Y EndFraction upper I right-parenthesis equals v e c left-parenthesis normal phi left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline StartFraction partial-differential z Over partial-differential upper Y EndFraction right-parenthesis period EndLayout

      The question: What information is required in order to fully specify this function? It is obvious that the following three types of information are needed (and only those). The answer: For every element of φ(xl), we need to know

      (A) Which region does it belong to, or what is the value of (0 ≤ p< Hl + 1 Wl + 1)?

      (B) Which element is it inside the region (or equivalently inside the convolution kernel); that is, what is the value of q(0 ≤ q< HWDl )? The above two types of information determine a location (p, q) inside φ(xl). The only missing information is (C) What is the value in that position, that is, [φ(xl)]pq?

      Since every element in φ(xl) is a verbatim copy of one element from xl, we can reformulate question (C) into a different but equivalent one:

      (C.1) Where is the value of a given [φ(xl)]pq copied from? Or, what is its original location inside xl, that is, an index u that satisfies 0 ≤ u < Hl Wl Dl? (C.2) The entire xl.

      Then, we can use the “indicator” method to encode the function m(p, q) = (il, jl, dl) into M. That is, for any possible element in M, its row index x determines a(p, q) pair, and its column index y determines a(il, jl, dl) triplet, and M is defined as

      (3.95)upper M left-parenthesis x comma y right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1 if m left-parenthesis p comma q right-parenthesis equals left-parenthesis i Superscript l Baseline comma j Superscript l Baseline comma d Superscript l Baseline right-parenthesis 2nd Row 0 otherwise EndLayout

      The M matrix is very high dimensional. At the same time, it is also very sparse: there is only one nonzero entry in the Hl Wl Dl elements in one row, because m is a function. M, which uses information [A, B, C.1], encodes only the one‐to‐one correspondence between any element in φ(xl) and any element in xl; it does not encode any specific value in xl. Putting together the one‐to‐one correspondence information in M and the value information in xl, we have