Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн книгу.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic


Скачать книгу
target="_blank" rel="nofollow" href="#fb3_img_img_6b5ccb9c-c3fb-5612-90fb-d20ec48c2ce1.png" alt="v e c left-parenthesis normal phi left-parenthesis x Superscript l Baseline right-parenthesis right-parenthesis equals upper M v e c left-parenthesis x Superscript l Baseline right-parenthesis period"/>

      Supervision signal for the previous layer: In the l‐th layer, we need to compute ∂z/∂vec(xl). For that, we want to reshape xl into a matrix element-of double-struck upper R Superscript left-parenthesis upper H Super Superscript l Superscript upper W Super Superscript l Superscript right-parenthesis times upper D Super Superscript l, and use these two equivalent forms (modulo reshaping) interchangeably. By the chain rule, ∂z/(vec(xl)T) = [∂z/(vec(y)T)][∂vec(y)/(vec(xl)T)].

      (3.97)StartFraction partial-differential v e c left-parenthesis y right-parenthesis Over partial-differential left-parenthesis v e c left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction equals StartFraction partial-differential left-parenthesis upper F Superscript upper T Baseline circled-times upper I right-parenthesis v e c left-parenthesis normal phi left-parenthesis x Superscript l Baseline right-parenthesis right-parenthesis Over partial-differential left-parenthesis v e c left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction equals left-parenthesis upper F Superscript upper T Baseline circled-times upper I right-parenthesis upper M period

      (3.98)StartFraction partial-differential z Over partial-differential left-parenthesis v e c left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction equals StartFraction partial-differential z Over partial-differential left-parenthesis v e c left-parenthesis y right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction left-parenthesis upper F Superscript upper T Baseline circled-times upper I right-parenthesis upper M period

      Since by using Eq. (3.88)

      (3.99)StartLayout 1st Row StartFraction partial-differential z Over partial-differential left-parenthesis v e c left-parenthesis y right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction left-parenthesis upper F Superscript upper T Baseline circled-times upper I right-parenthesis equals left-parenthesis left-parenthesis upper F circled-times upper I right-parenthesis StartFraction partial-differential z Over partial-differential v e c left-parenthesis y right-parenthesis EndFraction right-parenthesis Superscript upper T Baseline equals left-parenthesis left-parenthesis upper F circled-times upper I right-parenthesis v e c left-parenthesis StartFraction partial-differential z Over partial-differential upper Y EndFraction right-parenthesis right-parenthesis Superscript upper T Baseline 2nd Row equals v e c left-parenthesis upper I StartFraction partial-differential z Over partial-differential upper Y EndFraction upper F Superscript upper T Baseline right-parenthesis Superscript upper T Baseline equals v e c left-parenthesis StartFraction partial-differential z Over partial-differential upper Y EndFraction upper F Superscript upper T Baseline right-parenthesis Superscript upper T Baseline comma EndLayout

      we have

      (3.100)StartFraction partial-differential z Over partial-differential left-parenthesis v e c left-parenthesis x Superscript l Baseline right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction equals v e c left-parenthesis StartFraction partial-differential z Over partial-differential upper Y EndFraction upper F Superscript upper T Baseline right-parenthesis Superscript upper T Baseline upper M comma

      or equivalently