Core Microbiome. Группа авторов
Читать онлайн книгу.4 52.
30 30 Pascale, A., Proietti, S., Pantelides, I.S., and Stringlis, I.A. (2020). Modulation of the root microbiome by plant molecules: The basis for targeted disease suppression and plant growth promotion. Frontiers in Plant Science Jan 24 (10): 1741.
31 31 Harman, G.E., Björkman, T., Ondik, K., and Shoresh, M. (2008). Changing paradigms on the mode of action and uses of Trichoderma spp. for biocontrol. Outlooks on Pest Management Feb 1 19 (1): 24.
32 32 Weller, D.M., Raaijmakers, J.M., Gardener, B.B., and Thomashow, L.S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology Sep 40 (1): 309–348.
33 33 Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., and Jung, E.J. (2018). Author correction: Rhizosphere microbiome structure alters to enable wilt resistance in tomato (Nat. Biotechnology 36 (11): (1100–1116). 10.1038/nbt. 4232). Nature Biotechnology 2018 Nov 9 36 (11): 1117.
34 34 Shi, W., Li, M., Wei, G., Tian, R., Li, C., Wang, B., Lin, R., Shi, C., Chi, X., Zhou, B., and Gao, Z. (2019). The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome Dec 7 (1): 1–8.
35 35 Minuto, A., Spadaro, D., Garibaldi, A., and Gullino, M.L. (2006). Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection May 1 25 (5): 468–475.
36 36 Sindhu, S.S., Rakshiya, Y.S., and Sahu, G. (2009). Biological control of soilborne plant pathogens with rhizosphere bacteria. Pest Technology 3 (1): 10–21.
37 37 Palmieri, D., Vitullo, D., De Curtis, F., and Lima, G. (2017). A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant and Soil Mar 1 412 (1-2): 425–439.
38 38 Wu, H., Lin, M., Rensing, C., Qin, X., Zhang, S., Chen, J., Wu, L., Zhao, Y., Lin, S., and Lin, W. (2020). Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae. Plant and Soil Sep 454 (1): 411–430.
39 39 Li, X., De Boer, W., Ding, C., Zhang, T., and Wang, X. (2018). Suppression of soilborne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biology & Biochemistry Jan 1 116: 120–130.
40 40 Ren, L., Su, S., Yang, X., Xu, Y., Huang, Q., and Shen, Q. (2008). Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology & Biochemistry Mar 1 40 (3): 834–844.
41 41 Zhang, H., Yang, Y., Mei, X., Li, Y., Wu, J., Li, Y., Wang, H., Huang, H., Yang, M., He, X., and Zhu, S. (2020). Phenolic acids released in maize rhizosphere during maize-soybean intercropping inhibit Phytophthora blight of soybean. Frontiers in Plant Science Jul 28 (11): 886.
42 42 Bailey, K.L. and Lazarovits, G. (2003). Suppressing soilborne diseases with residue management and organic amendments. Soil and Tillage Research Aug 1 72 (2): 169–180.
43 43 Pane, C., Spadaccini, R., Piccolo, A., Scala, F., and Bonanomi, G. (2011). Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biological Control Feb 1 56 (2): 115–124.
44 44 Hardoim, P.R., van Overbeek, L.S., and van Elsas, J.D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology Oct 1 16 (10): 463–471.
45 45 Compant, S., Clément, C., and Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry May 1 42 (5): 669–678.
46 46 Compant, S., Duffy, B., Nowak, J., Clément, C., and Barka, E.A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology Sep 1 71 (9): 4951–4959.
47 47 Sapers, G.M., Gorny, J.R., and Yousef, A.E., (editors). (2005). Microbiology of Fruits and Vegetables. CRC Press. Aug 29.
48 48 Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-mosqueda, M., and Glick, B.R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research Feb 1 183: 92–99.
49 49 Reinhold-Hurek, B. and Hurek, T. (2011). Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology Aug 1 14 (4): 435–443.
50 50 Chaturvedi, H., Singh, V., and Gupta, G. (2016). Potential of bacterial endophytes as plant growth-promoting factors. Journal of Plant Pathology and Microbiology 7 (9): 1–6.
51 51 Anjum, R., Afzal, M., Baber, R., Khan, M.A., Kanwal, W., Sajid, W., and Raheel, A. (2019). Endophytes: As potential biocontrol agent—review and future prospects. The Journal of Agricultural Science 11: 113.
52 52 Sheoran, N., Nadakkakath, A.V., Munjal, V., Kundu, A., Venugopal, V., Rajamma, S., Eapen, S.J., and Kumar, A. (2015). Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiological Research Apr 173: 66–78.
53 53 Sessitsch, A., Reiter, B., and Berg, G. (2004). Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canadian Journal of Microbiology May 50: 239–249.
54 54 Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E.R.B., Taghavi, S., Mezgeay, M., and Lelie, D.V.D. (2002). Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences Nov 21 (6): 583–606.
55 55 Martinuz, A., Schouten, A., and Sikora, R.A. (2012). Systemically induced resistance and microbial competitive exclusion: Implications on biological control. Phytopathology Mar 102 (3): 260–266.
56 56 Rodriguez, R.J., White, J.F., Jr, Arnold, A.E., and Redman, A.R. (2009). Fungal endophytes: Diversity and functional roles. New Phytologist Apr 182 (2): 314–330.
57 57 Trover, M.F., Scavone, P., Platero, R., de Souza, E.M., Fabiano, E., and Rusconi, F. (2018). Herbaspirillum seropedicae differentially expressed genes