Properties for Design of Composite Structures. Neil McCartney

Читать онлайн книгу.

Properties for Design of Composite Structures - Neil McCartney


Скачать книгу
Baseline EndFraction StartFraction partial-differential x Subscript i Baseline Over partial-differential x overbar Subscript upper L Baseline EndFraction equals upper R Subscript i upper M Baseline upper U Subscript upper M upper K Baseline upper R Subscript i upper N Baseline upper U Subscript upper N upper L Baseline equals upper R Subscript upper N i Superscript normal upper T Baseline upper R Subscript i upper M Baseline upper U Subscript upper M upper K Baseline upper U Subscript upper N upper L Baseline equals delta Subscript upper M upper N Baseline upper U Subscript upper M upper K Baseline upper U Subscript upper N upper L Baseline equals upper U Subscript upper M upper K Baseline upper U Subscript upper M upper L Baseline comma"/>(2.97)

      so that in dyadic form

      upper C equals upper U period zero width space upper U period(2.98)

      The symmetric tensors U and V have common eigenvalues λJ but different mutually orthogonal eigenvectors νJ such that

      upper U period nu Subscript upper J Baseline equals lamda Subscript upper J Baseline nu Subscript upper J Baseline comma upper V period left-parenthesis upper R period nu Subscript upper J Baseline right-parenthesis equals lamda Subscript upper J Baseline left-parenthesis upper R period nu Subscript upper J Baseline right-parenthesis comma upper J equals 1 comma 2 comma 3 period(2.99)

      The eigenvalues λJ, J = 1, 2, 3, are the principal stretches and

      upper U equals sigma-summation Underscript upper J equals 1 Overscript 3 Endscripts lamda Subscript upper J Baseline nu Subscript upper J Baseline nu Subscript upper J Baseline period(2.100)

      It then follows that the principal values CJ of the C may be written in terms of the principal stretches λJ as follows

      upper C Subscript upper J Baseline equals lamda Subscript upper J Superscript 2 Baseline zero width space zero width space comma upper J equals 1 comma 2 comma 3 period zero width space zero width space zero width space(2.101)

      It follows from (2.94) that

      normal d upper C equals sigma-summation Underscript upper J equals 1 Overscript 3 Endscripts normal d upper C Subscript upper J Baseline nu Subscript upper J Baseline nu Subscript upper J Baseline plus sigma-summation Underscript upper J equals 1 Overscript 3 Endscripts upper C Subscript upper J Baseline nu Subscript upper J Baseline normal d nu Subscript upper J Baseline plus sigma-summation Underscript upper J equals 1 Overscript 3 Endscripts upper C Subscript upper J Baseline normal d nu Subscript upper J Baseline nu Subscript upper J Baseline comma(2.102)

      and on multiplying by νK using the properties (2.95) it can be shown that

      In terms of the principal values C1, C2 and C3 of the tensor C and E1, E2 and E3 of the tensor E, the corresponding invariants may be written as (see [1, Section 1.10])

      table attributes columnalign left end attributes row cell I subscript C equals C subscript 1 plus C subscript 2 plus C subscript 3 comma I I subscript C equals C subscript 1 C subscript 2 plus C subscript 2 C subscript 3 plus C subscript 3 C subscript 1 comma I I I subscript C equals C subscript 1 C subscript 2 C subscript 3 comma end cell row cell I subscript E equals E subscript 1 plus E subscript 2 plus E subscript 3 comma I I subscript E equals E subscript 1 E subscript 2 plus E subscript 2 E subscript 3 plus E subscript 3 E subscript 1 comma I I I subscript E equals E subscript 1 E subscript 2 E subscript 3. end cell end table(2.104)

      It can be shown that

      StartFraction rho Over rho 0 EndFraction equals StartFraction 1 Over lamda 1 lamda 2 lamda 3 EndFraction equals StartFraction 1 Over StartRoot det left-parenthesis upper C right-parenthesis EndRoot EndFraction equals StartFraction 1 Over StartRoot upper I upper I upper I Subscript upper C Baseline EndRoot EndFraction comma(2.105)

      where ρ0 is the uniform mass density before deformation has occurred at some reference temperature T0 and reference pressure p0.

      2.11 Field Equations for Infinitesimal Deformations

      Continuum mechanics is based upon conservation laws that lead to the basic field equations that are independent of the properties of material to which the laws are applied. The mathematical statement of these laws is now given for the case of infinitesimal deformations where there is no practical distinction between the use of so-called material coordinates and spatial coordinates.

      For many practical applications the deformation gradients are sufficiently small for quadratic terms to be neglected when compared with linear terms leading to an infinitesimal deformation theory. The expression (2.88) for the Lagrangian strain tensor may then be approximated by υ≅ε where

      is known as the infinitesimal strain tensor and where ∇ denotes the gradient with respect to the coordinates x. In addition, there is no need to distinguish between the initial and deformed states of the medium so that x≅x¯. Relation (2.106) may be written in component form so that

      which shows that the infinitesimal strain tensor ε is symmetric.

      For a continuous medium having a uniform density distribution ρ0 in its undeformed state, the principle of conservation of mass for infinitesimal deformations is expressed as

      where ρ is the density of the medium during deformation. This equation simply states that the mass of a given set of material points remains constant during any deformation. The local density ρ of the medium measured relative to spatial coordinates will in fact vary because of non-uniform displacement gradients, but this change is negligible for infinitesimal deformation theory where the value of ρ corresponds to the initial density ρ0 prior to deformation, as asserted by (2.108).

      For the equilibrium situations considered in this book, body forces are neglected so that b = 0 and the equation of motion (Скачать книгу