Магия математики: Как найти x и зачем это нужно. Артур Бенджамин

Читать онлайн книгу.

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин


Скачать книгу
пример, скажем, 98 × 98. Для удобства к первому числу добавим 2 до 100, а от второго отнимем 2 до 96. Значит, к их произведению нужно будет прибавить 2². Вот наше уравнение:

98²= 100 × 96 + 2² = 9600 + 4 = 9604

      Особенно легко применять эту схему к числам, которые заканчиваются на 5: если уменьшить и увеличить их на 5, оперировать придется круглыми числами. Например:

35² = 30 × 40 + 5² = 1200 + 25 = 122555² = 50 × 60 +5² = 3000 + 25 = 302585² = 80 × 90 + 5² = 7200 + 25 = 7225

      Теперь попробуем возвести в уме в квадрат 59. Увеличив и уменьшив это число на единицу, получим 59² = (60 × 58) + 1². Но как умножить в уме 60 на 58? Простой совет из двух слов: слева направо. Забудем на время про 0 и подсчитаем 6 × 58: 6 × 50 = 300 и 6 × 8 = 48. Потом сложим эти два результата (опять же, слева направо) и получим 348. И добавим ноль в конце, то есть 60 × 58 = 3480. Поэтому:

59² = 60 × 58 + 1² = 3480 + 1 = 3481Отступление

      А вот алгебраическое доказательство этого метода (перечитайте это отступление после того, как во второй главе мы поговорим о разнице квадратов):

А² = (A + d) (Ad) + d²

      где A – число, возводимое в квадрат, d – разность с ближайшим круглым числом (формула, кстати, справедлива для любого d). Для примера возведем в квадрат 59: А = 59, d = 1, значит, формула превращается в (59 + 1) × (59 – 1) + 1², как и в предыдущем вычислении.

      Теперь, когда вы профессионально возводите в квадрат двузначные числа, можно попробовать и трехзначные. Если помните, 12² = 144, значит:

112² = (100 × 124) + 12² = 12 400 + 144 = 12 544

      Есть еще одна подобная формула, которая работает для любых двух чисел, близких к сотне. Человек, который становится случайным свидетелем таких вычислений, испытывает чувство, будто наблюдает за трюком фокусника. Вот, например, 104 × 109. Рядом с каждым из них пишем число, на которое оно превышает сотню (см. пример ниже). В левом столбце сложим первое число со второй разностью и запишем результат: 104 + 9 = 113. В правом столбце перемножим две разности: 4 × 9 = 36. «Соединим» эти числа, то есть запишем их одно за другим и – тадам! – волшебным образом получим ответ: 11 336.

      Другие примеры и алгебраическую формулу такого вычисления я приведу чуть позже, в главе 2. И, раз уж мы об этом заговорили, кое-что еще о вычислениях в уме. Мы тратим уйму времени на то, чтобы научиться считать столбиком, хотя научиться делать это в уме куда быстрее. Задумайтесь: как часто в обычной жизни у нас есть время и возможность достать бумагу и провести все необходимые подсчеты? Для сложных вычислений можно воспользоваться калькулятором, но не будете же вы доставать его в магазине, читая данные об энергетической ценности на упаковке продуктов, или сидя в зале собрания, или дома, включив выпуск экономических новостей. Вот здесь-то, в оценке по-настоящему важных для вас цифр, и становятся очевидными все плюсы устного счета. Увы, в школе нас хорошо учат считать на бумаге, со счетом в уме дела обстоят плохо.

      Строго говоря, эта тема достойна отдельной книги, но, раз уж мы говорим о магии, а не о способностях человеческого мозга, коснемся ее вскользь, обозначив лишь самые основные положения. Главный прием, о котором я не устаю


Скачать книгу