Illustrations of Universal Progress: A Series of Discussions. Spencer Herbert

Читать онлайн книгу.

Illustrations of Universal Progress: A Series of Discussions - Spencer Herbert


Скачать книгу
– namely, about the poles – there must thus have resulted the first geographical distinction of parts. To these illustrations of growing heterogeneity, which, though deduced from the known laws of matter, may be regarded as more or less hypothetical, Geology adds an extensive series that have been inductively established. Its investigations show that the Earth has been continually becoming more heterogeneous in virtue of the multiplication of the strata which form its crust; further, that it has been becoming more heterogeneous in respect of the composition of these strata, the latter of which, being made from the detritus of the older ones, are many of them rendered highly complex by the mixture of materials they contain; and that this heterogeneity has been vastly increased by the action of the Earth's still molten nucleus upon its envelope, whence have resulted not only a great variety of igneous rocks, but the tilting up of sedimentary strata at all angles, the formation of faults and metallic veins, the production of endless dislocations and irregularities. Yet again, geologists teach us that the Earth's surface has been growing more varied in elevation – that the most ancient mountain systems are the smallest, and the Andes and Himalayas the most modern; while in all probability there have been corresponding changes in the bed of the ocean. As a consequence of these ceaseless differentiations, we now find that no considerable portion of the Earth's exposed surface is like any other portion, either in contour, in geologic structure, or in chemical composition; and that in most parts it changes from mile to mile in all these characteristics.

      Moreover, it must not be forgotten that there has been simultaneously going on a gradual differentiation of climates. As fast as the Earth cooled and its crust solidified, there arose appreciable differences in temperature between those parts of its surface most exposed to the sun and those less exposed. Gradually, as the cooling progressed, these differences became more pronounced; until there finally resulted those marked contrasts between regions of perpetual ice and snow, regions where winter and summer alternately reign for periods varying according to the latitude, and regions where summer follows summer with scarcely an appreciable variation. At the same time the successive elevations and subsidences of different portions of the Earth's crust, tending as they have done to the present irregular distribution of land and sea, have entailed various modifications of climate beyond those dependent on latitude; while a yet further series of such modifications have been produced by increasing differences of elevation in the land, which have in sundry places brought arctic, temperate, and tropical climates to within a few miles of each other. And the general result of these changes is, that not only has every extensive region its own meteorologic conditions, but that every locality in each region differs more or less from others in those conditions, as in its structure, its contour, its soil. Thus, between our existing Earth, the phenomena of whose varied crust neither geographers, geologists, mineralogists, nor meteorologists have yet enumerated, and the molten globe out of which it was evolved, the contrast in heterogeneity is sufficiently striking.

      When from the Earth itself we turn to the plants and animals that have lived, or still live, upon its surface, we find ourselves in some difficulty from lack of facts. That every existing organism has been developed out of the simple into the complex, is indeed the first established truth of all; and that every organism that has existed was similarly developed, is an inference which no physiologist will hesitate to draw. But when we pass from individual forms of life to Life in general, and inquire whether the same law is seen in the ensemble of its manifestations, – whether modern plants and animals are of more heterogeneous structure than ancient ones, and whether the Earth's present Flora and Fauna are more heterogeneous than the Flora and Fauna of the past, – we find the evidence so fragmentary, that every conclusion is open to dispute. Two-thirds of the Earth's surface being covered by water; a great part of the exposed land being inaccessible to, or untravelled by, the geologist; the greater part of the remainder having been scarcely more than glanced at; and even the most familiar portions, as England, having been so imperfectly explored that a new series of strata has been added within these four years, – it is manifestly impossible for us to say with any certainty what creatures have, and what have not, existed at any particular period. Considering the perishable nature of many of the lower organic forms, the metamorphosis of many sedimentary strata, and the gaps that occur among the rest, we shall see further reason for distrusting our deductions. On the one hand, the repeated discovery of vertebrate remains in strata previously supposed to contain none, – of reptiles where only fish were thought to exist, – of mammals where it was believed there were no creatures higher than reptiles, – renders it daily more manifest how small is the value of negative evidence.

      On the other hand, the worthlessness of the assumption that we have discovered the earliest, or anything like the earliest, organic remains, is becoming equally clear. That the oldest known sedimentary rocks have been greatly changed by igneous action, and that still older ones have been totally transformed by it, is becoming undeniable. And the fact that sedimentary strata earlier than any we know, have been melted up, being admitted, it must also be admitted that we cannot say how far back in time this destruction of sedimentary strata has been going on. Thus it is manifest that the title, Palæozoic, as applied to the earliest known fossiliferous strata, involves a petitio principii; and that, for aught we know to the contrary, only the last few chapters of the Earth's biological history may have come down to us. On neither side, therefore, is the evidence conclusive. Nevertheless we cannot but think that, scanty as they are, the facts, taken altogether, tend to show both that the more heterogeneous organisms have been evolved in the later geologic periods, and that Life in general has been more heterogeneously manifested as time has advanced. Let us cite, in illustration, the one case of the vertebrata. The earliest known vertebrate remains are those of Fishes; and Fishes are the most homogeneous of the vertebrata. Later and more heterogeneous are Reptiles. Later still, and more heterogeneous still, are Mammals and Birds. If it be said, as it may fairly be said, that the Palæozoic deposits, not being estuary deposits, are not likely to contain the remains of terrestrial vertebrata, which may nevertheless have existed at that era, we reply that we are merely pointing to the leading facts, such as they are.

      But to avoid any such criticism, let us take the mammalian subdivision only. The earliest known remains of mammals are those of small marsupials, which are the lowest of the mammalian type; while, conversely, the highest of the mammalian type – Man – is the most recent. The evidence that the vertebrate fauna, as a whole, has become more heterogeneous, is considerably stronger. To the argument that the vertebrate fauna of the Palæozoic period, consisting, so far as we know, entirely of Fishes, was less heterogeneous than the modern vertebrate fauna, which includes Reptiles, Birds, and Mammals, of multitudinous genera, it may be replied, as before, that estuary deposits of the Palæozoic period, could we find them, might contain other orders of vertebrata. But no such reply can be made to the argument that whereas the marine vertebrata of the Palæozoic period consisted entirely of cartilaginous fishes, the marine vertebrata of later periods include numerous genera of osseous fishes; and that, therefore, the later marine vertebrate faunas are more heterogeneous than the oldest known one. Nor, again, can any such reply be made to the fact that there are far more numerous orders and genera of mammalian remains in the tertiary formations than in the secondary formations. Did we wish merely to make out the best case, we might dwell upon the opinion of Dr. Carpenter, who says that "the general facts of Palæontology appear to sanction the belief, that the same plan may be traced out in what may be called the general life of the globe, as in the individual life of every one of the forms of organized being which now people it." Or we might quote, as decisive, the judgment of Professor Owen, who holds that the earlier examples of each group of creatures severally departed less widely from archetypal generality than the later ones – were severally less unlike the fundamental form common to the group as a whole; that is to say – constituted a less heterogeneous group of creatures; and who further upholds the doctrine of a biological progression. But in deference to an authority for whom we have the highest respect, who considers that the evidence at present obtained does not justify a verdict either way, we are content to leave the question open.

      Whether an advance from the homogeneous to the heterogeneous is or is not displayed in the biological history of the globe, it is clearly enough displayed in the progress of the latest and most heterogeneous creature – Man. It is alike true that, during the period in which the Earth has been peopled, the human organism has grown more heterogeneous among the civilized divisions


Скачать книгу