BIG DATA. Вся технология в одной книге. Андреас Вайгенд
Читать онлайн книгу.того, что допущения – свойственная описаниям неопределенность – это неотъемлемый элемент прогноза, а для инструкций обязательно нужна обратная связь. Стоит ли инфообработчикам помещать вас в какой-либо маркетинговый сегмент на основе истории ваших поисковых запросов в Google? Можно ли объективно судить о кандидате на должность исключительно на основе анализа данных о его контактах в LinkedIn? Насколько обоснованными будут индивидуальные рекомендации по физическим нагрузкам, в основу которых положен анализ информации из Facebook о посещении этим человеком ресторанов?
Инфопереработчики не только описывают, прогнозируют и инструктируют – они еще и экспериментируют. Вполне возможно, что над вами экспериментируют каждый раз, когда вы покупаете бестселлеры в Amazon, подбираете себе мокасины в Zappos или ищете пару на Match.com. Эксперименты нужны, чтобы совершенствовать продукты и услуги инфопереработки при помощи так называемого А/В-тестирования.
В науке причинно-следственная связь устанавливается экспериментальным путем: реакция на изменение одной независимой переменной в экспериментальной группе сравнивается с реакцией контрольной группы, для которой эта переменная остается неизменной. А/В-эксперименты, как правило, начинаются с вопроса. Например: «Какими зонтиками, красными или синими, мне нужно торговать, чтобы максимизировать их продажи?» Этот вопрос кажется очень простым, но из него вытекает масса сложностей в проведении удачного А/В-эксперимента. Продавец зонтиков может попытаться найти правильное решение, поставив свой прилавок на некой точке и продавая только синие зонтики в первый день и только красные – на второй. Он может даже проводить этот эксперимент два понедельника подряд, когда работающие в этом районе вроде бы должны быть более склонны забывать зонтики в суматохе перед выходом из дому. Но, определяя место для торговой точки и день недели для эксперимента, он не принимает в расчет одну из самых важных переменных, определяющих потребность в любом зонтике, красном или синем, а именно – идет ли дождь.
Инфопереработчикам приходится учитывать намного больше переменных, чем нашему торговцу зонтиками. В Amazon все, что касается внешнего вида страниц, от размера строки поиска до места размещения диалогового окна, от опций оформления и оплаты до части описания товара, доступной без второго клика, решается после проведения А/В-экспериментов. Широко известна история про то, как Google проводила А/В-эксперименты для определения оттенка синего цвета для рекламных ссылок. Источники в Google утверждают, что в результате выбора одного из пятидесяти возможных вариантов ежегодная выручка от рекламы возросла на 200 миллионов долларов[61].
Описательный анализ дает возможность выявлять «естественные эксперименты» – ситуации, когда можно проследить последствия изменения некоего условия, произошедшего случайно или по ошибке (например, когда при внедрении программного обеспечения обнаруживается баг). Веб-разработчики
61
Hern, Alex, “Why Google Has 200M Reasons to Put Engineers over Designers”, Guardian, February 5, 2014, http://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers.