Математические головоломки. Яков Перельман
Читать онлайн книгу.написать возможно большее число.
444,
РЕШЕНИЕ
Если в данном случае вы поступите по образцу двух предыдущих задач, т. е. дадите ответ
444,
то ошибетесь, потому что на этот раз трехъярусное расположение
как раз дает большее число. В самом деле, 44 = 256, а 4256 больше чем 444.
Тремя одинаковыми цифрами
Попытаемся углубиться в это озадачивающее явление и установить, почему одни цифры порождают числовые исполины при трехъярусном расположении, другие – нет. Рассмотрим общий случай.
Тремя одинаковыми цифрами, не употребляя знаков действий, изобразить возможно большее число.
Обозначим цифру буквой а. Расположению
222, 333, 444
соответствует написание
а10а+а, т. е. а11а.
Расположение же трехъярусное представится в общем виде так:
aaa.
Определим, при каком значении а последнее расположение изображает большее число, нежели первое. Так как оба выражения представляют степени с равными целыми основаниями, то бóльшая величина отвечает большему показателю. Когда же
аа > 11а?
Разделим обе части неравенства на а. Получим:
аа–1 > 11.
Легко видеть, что аа–1 больше 11 только при условии, что а больше 3, потому что
44–1 > 11,
между тем как степени
32 и 21
меньше 11.
Теперь понятны те неожиданности, с которыми мы сталкивались при решении предыдущих задач: для двоек и троек надо было брать одно расположение, для четверок и бóльших чисел – другое.
Четырьмя единицами
ЗАДАЧА
Четырьмя единицами, не употребляя никаких знаков математических действий, написать возможно большее число.
РЕШЕНИЕ
Естественно приходящее на ум число – 1111 – не отвечает требованию задачи, так как степень
1111
во много раз больше. Вычислять это число десятикратным умножением на 11 едва ли у кого хватит терпения. Но можно оценить его величину гораздо быстрее с помощью логарифмических таблиц.
Число это превышает 285 миллиардов и, следовательно, больше числа 1111 в 25 с лишним млн раз.
Четырьмя двойками
ЗАДАЧА
Сделаем следующий шаг в развитии задач рассматриваемого рода и поставим наш вопрос для четырех двоек.
При каком расположении четыре двойки изображают наибольшее число?
РЕШЕНИЕ
Возможны 8 комбинаций:
Какое же из этих чисел наибольшее?
Займемся сначала верхним рядом, т. е. числами в двухъярусном расположении.
Первое – 2222, – очевидно, меньше трех прочих.
Чтобы сравнить следующие два —
2222 и 2222,
преобразуем второе из них:
2222 = 222-11 = (222)11 = 48411.
Последнее число больше, нежели 2222, так как и основание, и показатель у степени 48411 больше, чем у степени 2222.
Сравним