Dirt. David R. Montgomery

Читать онлайн книгу.

Dirt - David R. Montgomery


Скачать книгу
that life depends on recycling past life.

      Humans have not yet described all the species present in any natural soil. Yet soils and the biota that inhabit them provide clean drinking water, recycle dead materials into new life, facilitate the delivery of nutrients to plants, store carbon, and even remediate wastes and pollutants—as well as produce almost all of our food.

      Out of sight and out of mind, soil-dwelling organisms can be greatly influenced by agricultural practices. Tilling the soil can kill large soil-dwelling organisms, and reduce the number of earthworms. Pesticides can exterminate microbes and microfauna. Conventional short-rotation, single-crop farming can reduce the diversity, abundance, and activity of beneficial soil fauna, and indirectly encourage proliferation of soilborne viruses, pathogens, and crop-eating insects. Generally, so-called alternative agricultural systems tend to better retain soil-dwelling organisms that enhance soil fertility.

      Like soil formation, soil erosion rates depend on soil properties inherited from the parent material (rocks), and the local climate, organisms, and topography. A combination of textural properties determines a soil's ability to resist erosion: its particular mix of silt, sand, or clay, and binding properties from aggregation with soil organic matter. Higher organic matter content inhibits erosion because soil organic matter binds soil particles together, generating aggregates that resist erosion. A region's climate influences erosion rates through how much precipitation falls and whether it flows off the land as rivers or glaciers. Topography matters as well; all other things being equal, steeper slopes erode faster than gentle slopes. However, greater rainfall not only generates more runoff, and therefore more erosion, it also promotes plant cover that protects the soil from erosion. This basic trade-off means that the amount of rainfall does not simply dictate the pace of soil erosion. Wind can be a dominant erosion process in arid environments or on bare disturbed soil, like agricultural fields. Biological processes, whether Darwin's worms or human activities such as plowing, also gradually move soil downslope.

      Although different types of erosional processes are more or less important in different places, a few tend to dominate. When rain falls onto the ground it either sinks into the soil or runs off over it; greater runoff leads to more erosion. Where enough runoff accumulates, flowing sheets of water can pick up and transport soil, carving small channels, called rills, which collect into larger, more erosive gullies—the name for incised channels large enough that they cannot be plowed over. On steep slopes, intense or sustained rainfall can saturate soil enough to trigger landsliding. Wind can pick up and erode dry soil with sparse vegetation cover. While many of these processes operate in a landscape, the dominant process varies with the topography and climate.

      In the 1950s soil erosion researchers began seeking a general equation to explain soil loss. Combining data from erosion research stations they showed that soil erosion, like soil production, is controlled by the nature of the soil, the local climate, the topography, and the nature and condition of the vegetation. In particular, rates of soil erosion are also strongly influenced by the slope of the land and by agricultural practices. Generally, steeper slopes, greater rainfall, and sparser vegetation lead to more erosion.

      Plants and the litter they produce protect the ground from the direct impact of raindrops as well as the erosive action of flowing water. When bare soil is exposed to rain, the blast from each incoming raindrop sends dirt downslope. Intense rainfall that triggers rapid topsoil erosion exposes deeper, denser soil that absorbs water less quickly and therefore produces more runoff. This, in turn, increases the erosive power of the water flowing over the ground surface. Some soils are incredibly sensitive to this positive feedback that can rapidly strip topsoil from bare exposed ground.

      Below the surface, extensive networks of roots link plants and stabilize the topography. In a closed canopy forest, roots from individual trees intertwine in a living fabric that helps bind soil onto slopes. Conversely, steep slopes tend to erode rapidly when stripped of forest cover.

      Soil scientists use a simple system to describe different soil layers—literally an ABC of dirt. The partially decomposed organic matter found at the ground surface is called the O horizon. This organic layer, whose thickness varies with vegetation and climate, typically consists of leaves, twigs, and other plant material on top of the mineral soil. The organic horizon may be missing altogether in arid regions with sparse vegetation, whereas in thick tropical jungles the O horizon holds most soil nutrients.

      Below the organic horizon lies the A horizon, the nutrient-rich zone of decomposed organic matter mixed with mineral soil. Dark, organic-rich A horizons at or near the ground surface are what we normally think of as dirt. Topsoil formed by the loose O and A horizons erodes easily if exposed to rainfall, runoff, or high winds.

      The next horizon down, the B horizon, is generally thicker than the top-soil, but less fertile due to lower organic content. Often referred to as subsoil, the B horizon gradually accumulates clays and cations carried down into the soil. The weathered rock below the B horizon is called the C horizon.

images

      Figure 2. Over time, soils develop distinctive topsoil and subsoil horizons above weathered rock.

      Concentrated organic matter and nutrients make soils with well-developed A horizons the most fertile. In topsoil, a favorable balance of water, heat, and soil gases fosters rapid plant growth. Conversely, typical subsoils have excessive accumulations of clay that are hard for plant roots to penetrate, low pH that inhibits crop growth, or cementlike hardpan layers enriched in iron, aluminum, or calcium. Soils that lose their topsoil generally are less productive, as most B horizons are far less fertile than the topsoil.

      Combinations of soil horizons, their thickness, and composition vary widely for soils developed under different conditions and over different lengths of time. There are some twenty thousand specific soil types recognized in the United States. Despite such variety, most soil profiles are about one to three feet thick.

      Soil truly is the skin of the earth—the frontier between geology and biology. Within its few feet, soil accounts for a bit more than a ten millionth of our planet's 6,380 km radius. By contrast, human skin is less than a tenth of an inch thick, a little less than a thousandth of the height of the average person. Proportionally, Earth's skin is a much thinner and more fragile layer than human skin. Unlike our protective skin, soil acts as a destructive blanket that breaks down rocks. Over geologic time, the balance between soil production and erosion allows life to live off a thin crust of weathered rock.

      The global geography of soil makes a few key regions particularly well suited to sustaining intensive agriculture. Most of the planet has poor soils that are difficult to farm, or are vulnerable to rapid erosion if cleared and tilled. Globally, temperate grassland soils are the most important to agriculture because they are incredibly fertile, with thick, organic-rich A horizons. Deep and readily tilled, these soils underlie the great grain-producing regions of the world.

      A civilization can persist only as long as it retains enough productive soil to feed its people. A landscape's soil budget is just like a family budget, with income, expenses, and savings. You can live off your savings for only so long before you run out of money. A society can remain solvent by drawing off just the interest from nature's savings account—losing soil only as fast as it forms. But if erosion exceeds soil production, then soil loss will eventually consume the principal. Depending on the erosion rate, thick soil can be mined for centuries before running out; thin soils can disappear far more rapidly.

      Instead of the year-round plant cover typical of most native vegetation communities, crops shield agricultural fields for just part of the year, exposing bare soil to wind and rain and resulting in more erosion than would occur under native vegetation. Bare slopes also produce more runoff, and can erode as much as a hundred to a thousand times faster than comparable vegetation-covered soil. Different types of conventional cropping systems result in soil erosion many times faster than under grass or forest.

      In addition, soil organic matter declines under continuous cultivation as it oxidizes when exposed to air. Thus, because high organic matter content can as much as double erosion resistance, soils generally become more erodible the longer they are plowed.

      Conventional


Скачать книгу