Security Engineering. Ross Anderson

Читать онлайн книгу.

Security Engineering - Ross  Anderson


Скачать книгу
the other as a series of logically separate machines for development, testing, and minor applications. It's not enough to run a virtual machine monitor (VMM) on top of a host operating system, and then run other operating systems on top; you have to deal with sensitive instructions that reveal processor state such as absolute addresses and the processor clock. Working VMMs appeared for Intel platforms with VMware ESX Server in 2003 and (especially) Xen in 2003, which accounted for resource usage well enough to enable AWS and the cloud computing revolution. Things can be done more cleanly with processor support, which Intel has provided since 2006 with VT-x, and whose details I'll discuss below. VM security claims rest to some extent on the argument that a VMM hypervisor's code can be much smaller than an operating system and thus easier to code-review and secure; whether there are actually fewer vulnerabilities is of course an empirical question [1578].

      Containers have been the hot new topic in the late 2010s. They evolved as a lightweight alternative to virtualisation in cloud computing and are often confused with it, especially by the marketing people. My definition is that while a VM has a complete operating system, insulated from the hardware by a hypervisor, a container is an isolated guest process that shares a kernel with other containers. Container implementations separate groups of processes by virtualising a subset of operating-system mechanisms, including process identifiers, interprocess communication, and namespaces; they also use techniques such as sandboxing and system call filtering. The business incentive is to minimise the guests' size, their interaction complexity and the costs of managing them, so they are deployed along with orchestration tools. Like any other new technology, there are many startups with more enthusiasm than experience. A 2019 survey by Jerry Gamblin disclosed that of the top 1000 containers available to developers on Docker Hub, 194 were setting up blank root passwords [743]. If you're going to use cloud systems, you need to pay serious attention to your choice of tools, and also learn yet another set of access control mechanisms – those offered by the service provider, such as the Amazon AWS Identity and Access Management (IAM). This adds another layer of complexity, which people can get wrong. For example, in 2019 a security firm providing biometric identification services to banks and the police left its entire database unprotected; two researchers found it using Elasticsearch and discovered millions of people's photos, fingerprints, passwords and security clearance levels on a database that they could not only read but write [1867].

      But even if you tie down a cloud system properly, there are hardware limits on what the separation mechanisms can achieve. In 2018, two classes of powerful side-channel attacks were published: Meltdown and Spectre, which I discuss in the following section and at greater length in the chapter on side channels. Those banks that use containers to deploy payment processing rely, at least implicitly, on their containers being difficult to target in a cloud the size of Amazon's or Google's. For a comprehensive survey of the evolution of virtualisation and containers, see Randal [1578].

      Most access control systems set out not just to control what users can do, but to limit what programs can do as well. In many systems, users can either write programs, or download and install them, and these programs may be buggy or even malicious.

      Preventing one process from interfering with another is the protection problem. The confinement problem is that of preventing programs communicating outward other than through authorized channels. There are several flavours of each. The goal may be to prevent active interference, such as memory overwriting, or to stop one process reading another's memory directly. This is what commercial operating systems set out to do. Military systems may also try to protect metadata – data about other data, or subjects, or processes – so that, for example, a user can't find out what other users are logged on to the system or what processes they're running.

      Unless one uses sandboxing techniques (which are too restrictive for general programming environments), solving the protection problem on a single processor means, at the very least, having a mechanism that will stop one program from overwriting another's code or data. There may be areas of memory that are shared to allow interprocess communication; but programs must be protected from accidental or deliberate modification, and must have access to memory that is similarly protected.

      This usually means that hardware access control must be integrated with the processor's memory management functions. A classic mechanism is segment addressing. Memory is addressed by two registers, a segment register that points to a segment of memory, and an address register that points to a location within that segment. The segment registers are controlled by the operating system, often by a component of it called the reference monitor which links the access control mechanisms with the hardware.

      There are a number of general problems with interfacing hardware and software security mechanisms. For example, it often happens that a less privileged process such as application code needs to invoke a more privileged process (e.g., a device driver). The mechanisms for doing this need to be designed with care, or security bugs can be expected. Also, performance may depend quite drastically on whether routines at different privilege levels are called by reference or by value [1687].

      6.3.1 Intel processors

      The Intel 8088/8086 processors used in early PCs had no distinction between system


Скачать книгу