Telescopic Work for Starlight Evenings. William F. Denning

Читать онлайн книгу.

Telescopic Work for Starlight Evenings - William F. Denning


Скачать книгу
the most eligible means to support their endeavours. One thing should be particularly remembered, that the power used must not be beyond the illuminating capacity of the instrument, for planetary features appear so faint and shady under excessive magnifiers that nothing is gained. To grasp details there must be a fair amount of light. I have seen more with 252 on my 10-inch reflector than with 350 on a 5–¼-inch refractor, because of the advantage from the brighter image in the former case.

      Overstating Powers.—It seems to be a fashionable imposition on the part of opticians to overstate magnifying powers. Eyepieces are usually advertised at double their true strength. My own 10-inch reflector was catalogued as having four eyepieces, 100 to 600, but on trial I found the highest was no more than 330. This custom of exaggerating powers seems to have long been a privileged deception, and persons buying telescopes ought to be guarded against it. Dr. Kitchiner says it originated with the celebrated maker of reflectors, James Short, and justly condemns it as a practice which should be discontinued. I suppose it is thought that high powers advertised in connection with a telescope have an exalted sound and are calculated to attract the unwary purchaser; but good instruments need no insidious trade artifices to make them saleable. The practice does not affect observers of experience, because it is well understood, and they take good care to test their eyepieces directly they get them. But the case is different with young and inexperienced amateurs, who naturally enough accept the words of respectable opticians, only to find, in many cases, that they have been misleading and a source of considerable annoyance.

      Method of finding the Power.—The magnifying power of a telescope may be determined by dividing the focal length of the object-glass or mirror by the focal length of the eye-lens. Thus, if the large glass has a focus of 70 inches and the eye-lens a focus of one inch, then the power is 70. If the latter is only ¼-inch focus, the resulting power will be 280. But this method is only applicable to single lens eyepieces. We may, however, resort to several other means of finding the powers of the compound eyepieces of Huygens or Ramsden. Let the observer fix a slip of white cardboard, say 1 inch wide, to a door or post some distance off, and then (with a refractor) view it, while keeping the disengaged eye open, and note the exact space covered by the telescopic image of the card as projected on the door seen by the other eye. The number of inches included in the space alluded to will represent the linear magnifying power. A brick wall or any surface with distinct, regularly marked divisions will answer the same purpose, the number of bricks or divisions covered by the telescopic image of one of them being equivalent to the power. But it should not be forgotten that a telescope magnifies slightly less upon a celestial object than upon a near terrestrial one owing to the shorter focus, and a trifling allowance will have to be made for this. Another plan may be mentioned. When the telescope is directed to any fairly bright object or to the sky, and the observer removes his eye about 10 inches from the eyepiece, a sharply defined, bright little disk will be perceived in the eye-lens. If the diameter of this disk is ascertained and the clear aperture of the object-glass or mirror is divided by it, the quotient will be the magnifying power. Thus, if the small circle of light is ·2 inch diameter and the effective aperture of the large glass 5 inches, then the power is 25. If the former is ·02 inch diameter and the latter 7·5 inches, the power will be 375. The dynamometer is a little instrument specially designed to facilitate this means of fixing the magnifying power. It enables the diameter of the small luminous circle in the eye-lens to be very accurately measured, and this is a most important factor in deriving the power by this method.

      Berthon’s Dynamometer. Horne & Thornthwaite London.

      Field of Eyepiece.—Observers often require to know the diameter of the fields of their eyepieces. Those engaged in sweeping up comets, nebulæ, or other objects requiring large fields and low powers, find it quite important to have this information. They may acquire it for themselves by simple methods. A planet, or star such as δ Orionis, η or γ Virginis, or η Aquilæ, close to the equator, should be allowed to run exactly through the centre of the field, and the interval occupied in its complete transit from ingress to egress noted several times. The mean result in min. and sec. of time must then be multiplied by 15, and this will represent the diameter required in min. and sec. of arc on the equator. A planet or star near the meridian is the best for the purpose. If the object occupies 1 min. 27 sec. of time in passing from the E. to the W. limit of the field, then 87 sec. × 15 = 1305″, or 21′ 45″. A more accurate method of deriving the angle subtended by the field is to let a star, say Regulus, pass through the centre, and fix the time which lapses in its entire passage by a sidereal clock; then the interval so found × 15 × cosine of the declination of Regulus will indicate the diameter of the field. Suppose for instance, that the star named occupies 2 min. 14 sec. = 134 sec. in its passage right across the whole and central part of the field: then

134 log 2·127105
15 log 1·176091
Dec. of Regulus 12° 30′ log cos 9·989581
1962″ log 3·292777

      so that the diameter of the field of the eyepiece must be 32′ 42″, nearly corresponding with the diameter of the Moon.

      Limited Means no Obstacle.—There are many observers who, having limited means, are apt to consider themselves practically unable to effect good work. This is a great illusion. There are several branches of astronomy in which the diligent use of a small instrument may be turned to excellent account. Perseverance will often compensate for lack of powerful appliances. Many of the large and expensive telescopes, now becoming so common, are engaged in work which could be as well performed with smaller aperture, and when the manifold advantages of moderate instruments are considered, amateurs may well cease to deplore the apparent insufficiency of their apparatus. It is, however, true that refractors have now attained dimensions and a degree of proficiency never contemplated in former times, and that the modern ingenuity of art has given birth to innumerable devices to facilitate the work of those engaged in observation. In many of our best appointed observatories the arrangements are so very replete with conveniences, and so sedatory in their influences, that the observer has every inducement to fall asleep, though we do not find instances of “nodding” recorded in their annals. Further progress in the same direction leads us to joyfully anticipate the time when, instead of standing out in the frost, we may comfortably make our observations in bed. This will admirably suit all those who, like Bristol people, are reported to sleep with one eye open! But, to be more serious, the work of amateurs is much hindered by lack of means to construct observatories wherein they may conduct researches without suffering from all the rigours of an unfavourable climate. Many of them have, like William Herschel a century ago, to pursue their labours under no canopy but the heavens above, and are exposed to all the trying severity of frost and keen winds, which keep them shivering for hours together, and very much awake!

      Cooke and Son’s Educational Telescope.

      

      Observing-Seats.—As to observing-seats, many useful contrivances have been described from time to time in the ‘Astronomical Register’ and ‘English Mechanic.’ Some of these answer their design admirably, but I believe a good chair, embodying all the many little requirements of the observer, yet awaits construction. Those I have seen, while supplying certain acknowledged wants, are yet deficient in some points which need provision. With my reflector I find an ordinary step-ladder answers the purpose very well. It is at once light, simple, and durable, and enables observations to be secured at any altitude. It may be readily placed so that the observer can work in a sitting posture, and the upper shelves, while


Скачать книгу