Experiments and Observations on Different Kinds of Air. Joseph Priestley

Читать онлайн книгу.

Experiments and Observations on Different Kinds of Air - Joseph Priestley


Скачать книгу
set upon the fire and make to boil. The air expelled by the heat, from the liquor contained in the phial, issues through the tube, and is received in the bason of quicksilver, fig. 7. Instead of this suspended bason, I sometimes content myself with tying a flaccid bladder to the end of the tube, in both these processes, that it may receive the newly generated air.

      In experiments on those kinds of air which are readily imbibed by water, I always make use of quicksilver, in the manner represented fig. 8, in which a is the bason of quicksilver, b a glass vessel containing quicksilver, with its mouth immersed in it, c a phial containing the ingredients from which the air is to be produced; and d is a small recipient, or glass vessel designed to receive and intercept any liquor that may be discharged along with the air, which is to be transmitted free from any moisture into the vessel b. If there be no apprehension of moisture, I make use of the glass tube only, without any recipient, in the manner represented e fig. 1. In order to invert the vessel b, I first fill it with quicksilver, and then carefully cover the mouth of it with a piece of soft leather; after which it may be turned upside down without any danger of admitting the air, and the leather may be withdrawn when it is plunged in the quicksilver.

      In order to generate air by the solution of metals, or any process of a similar nature, I put the materials into a phial, prepared in the manner represented at e fig. 1, and put the end of the glass tube under the mouth of any vessel into which I want to convey the air. If heat be necessary I can easily apply to it a candle, or a red hot poker while it hangs in this position.

      When I have occasion to transfer air from a jar standing in the trough of water to a vessel standing in quicksilver, or in any other situation whatever, I make use of the contrivance represented fig. 9, which consists of a bladder, furnished at one end with a small glass tube bended, and at the other with a cork, perforated so as just to admit the small end of a funnel. When the common air is carefully pressed out of this bladder, and the funnel is thrust tightly into the cork, it may be filled with any kind of air as easily as a glass jar; and then a string being tied above the cork in which the funnel is inserted, and the orifice in the other cork closed, by pressing the bladder against it, it may be carried to any place, and if the tube be carefully wiped, the air may be conveyed quite free from moisture through a body of quicksilver, or any thing else. A little practice will make this very useful manœuvre perfectly easy and accurate.

      In order to impregnate fluids with any kind of air, as water with fixed air, I fill a phial with the fluid larger or less as I have occasion (as a fig. 10;) and then inverting it, place it with its mouth downwards, in a bowl b, containing a quantity of the same fluid; and having filled the bladder, fig. 9, with the air, I throw as much of it as I think proper into the phial, in the manner described above. To accelerate the impregnation, I lay my hand on the top of the phial, and shake it as much as I think proper.

      If, without having any air previously generated, I would convey it into the fluid immediately as it arises from the proper materials, I keep the same bladder in connection with a phial c fig. 10, containing the same materials (as chalk, salt of tartar, or pearl ashes in diluted oil of vitriol, for the generation of fixed air) and taking care, lest, in the act of effervescence, any of the materials in the phial c should get into the vessel a, to place this phial on a stand lower than that on which the bason was placed, I press out the newly generated air, and make it ascend directly into the fluid. For this purpose, and that I may more conveniently shake the phial c, which is necessary in some processes, especially with chalk and oil of vitriol, I sometimes make use of a flexible leathern tube d, and sometimes only a glass tube. For if the bladder be of a sufficient length, it will give room for the agitation of the phial; or if not, it is easy to connect two bladders together by means of a perforated cork, to which they may both be fastened.

      When I want to try whether any kind of air will admit a candle to burn in it, I make use of a cylindrical glass vessel, fig. 11. and a bit of wax candle a fig. 12, fastened to the end of a wire b, and turned up, in such a manner as to be let down into the vessel with the flame upwards. The vessel should be kept carefully covered till the moment that the candle is admitted. In this manner I have frequently extinguished a candle more than twenty times successively, in a vessel of this kind, though it is impossible to dip the candle into it without giving the external air an opportunity of mixing with the air in the inside more or less. The candle c, at the other end of the wire is very convenient for holding under a jar standing in water, in order to burn as long as the inclosed air can supply it; for the moment that it is extinguished, it may be drawn through the water before any smoke can have mixed with the air.

      In order to draw air out of a vessel which has its mouth immersed in water, and thereby to raise the water to whatever height may be necessary, it is very convenient to make use of a glass syphon, fig. 13, putting one of the legs up into the vessel, and drawing the air out at the other end by the mouth. If the air be of a noxious quality, it may be necessary to have a syringe fastened to the syphon, the manner of which needs no explanation. I have not thought it safe to depend upon a valve at the top of the vessel, which Dr. Hales sometimes made use of.

      If, however, a very small hole be made at the top of a glass vessel, it may be filled to any height by holding it under water, while the air is issuing out at the hole, which may then be closed with wax or cement.

      If the generated air will neither be absorbed by water, nor diminish common air, it may be convenient to put part of the materials into a cup, supported by a stand, and the other part into a small glass vessel, placed on the edge of it, as at f, fig. 1. Then having, by means of a syphon, drawn the air to at convenient height, the small glass vessel may be easily pushed into the cup, by a wire introduced through the water; or it may be contrived, in a variety of ways, only to discharge the contents of the small vessel into the larger. The distance between the boundary of air and water, before and after the operation, will shew the quantity of the generated air. The effect of processes that diminish air may also be tried by the same apparatus.

      When I want to admit a particular kind of air to any thing that will not bear wetting, and yet cannot be conveniently put into a phial, and especially if it be in the form of a powder, and must be placed upon a stand (as in those experiments in which the focus of a burning mirror is to be thrown upon it) I first exhaust a receiver, in which it is previously placed; and having a glass tube, bended for the purpose, as in fig. 14, I screw it to the stem of a transfer of the air pump on which the receiver had been exhausted, and introducing it through the water into a jar of that kind of air with which I would fill the receiver, I only turn the cock, and I gain my purpose. In this method, however, unless the pump be very good, and several contrivances, too minute to be particularly described, be made use of a good deal of common air will get into the receiver.

      When I want to measure the goodness of any kind of air, I put two measures of it into a jar standing in water; and when I have marked upon the glass the exact place of the boundary of air and water, I put to it one measure of nitrous air; and after waiting a proper time, note the quantity of its diminution. If I be comparing two kinds of air that are nearly alike, after mixing them in a large jar, I transfer the mixture into a long glass tube, by which I can lengthen my scale to what degree I please.

      If the quantity of the air, the goodness of which I want to ascertain, be exceedingly small, so as to be contained in a part of a glass tube, out of which water will not run spontaneously, as a fig. 15; I first measure with a pair of compasses the length of the column of air in the tube, the remaining part being filled with water, and lay it down upon a scale; and then, thrusting a wire of a proper thickness, b, into the tube, I contrive, by means of a thin plate of iron, bent to a sharp angle c, to draw it out again, when the whole of this little apparatus has been introduced through the water into a jar of nitrous air; and the wire being drawn out, the air from the jar must supply its place. I then measure the length of this column of nitrous air which I have got into the tube, and lay it also down upon the scale, so as to know the exact length of both the columns. After this, holding the tube under water, with a small wire I force the two separate columns of air into contact, and when they have been a sufficient time together, I measure the length of the whole, and compare it with the length of both the columns taken before. A little experience will teach the


Скачать книгу