Magma Redox Geochemistry. Группа авторов
Читать онлайн книгу.M. R., Le Losq, C., Moretti, R., & Neuville, D. R. (2020b). Magmas are the largest repositories and carriers of Earth’s redox processes. Elements, 16, 3, 173–178. doi: 10.2138/gselements.16.3.173
17 Colson, R. O., Haskin, L. A., & Crane, D. (1990). Electrochemistry of cations in diopsidic melt: Determining diffusion rates and redox potentials from voltammetric curves. Geochimica et Cosmochimica Acta, 54, 3353–3367. https://doi.org/10.1016/0016‐7037(90)90290‐2
18 Cochain B., Neuville D. R., Henderson G. S., McCammon C., Pinet O., & Richet, P. (2012). Iron content, redox state and structure of sodium borosilicate glasses: A Raman, Mössbauer and boron K‐edge XANES spectroscopy study. Journal of the American Ceramics Society, 94, 1–12. https://doi.org/10.1111/j.1551‐2916.2011.05020.x
19 Cochain, B., Neuville, D. R., de Ligny, D., Malki, M., Testemale, D., Pinet O., & Richet P. (2013). Dynamics of iron‐bearing borosilicate melts: Effects of melt structure and composition on viscosity, electrical conductivity and kinetics of redox reactions. Journal of Non‐Crystalline Solids, 373–374, 18–27. https://doi.org/10.1016/j.jnoncrysol.2013.04.006
20 Cook, G. B., & Cooper, R. F. (2000). Iron concentration and the physical processes of dynamic oxidation in alkaline earth aluminosilicate glass. American Mineralogist, 85, 397–406. https://doi.org/10.2138/am‐2000‐0401
21 Cook, G. B., Cooper, R. F., & Wu, T. (1990). Chemical diffusion and crystalline nucleation during oxidation of ferrous ironbearing magnesium aluminosilicate glass. Journal of Non‐Crystalline Solids, 120, 207–222. https://doi.org/10.1016/0022‐3093(90)90205‐Z
22 Cooper, R. F., Fanselow, J. B., & Poker, D. B. (1996a). The mechanism of oxidation of a basaltic glass: chemical diffusion of network‐modifying cations. Geochimica et Cosmochimica Acta, 60(17), 3253–3265. https://doi.org/10.1016/0016‐7037(96)00160‐3
23 Cooper, R. F., Fanselow, J. B., Weber, J. K. R., Merkley, D. R., & Poker, D. B. (1996b). Dynamics of oxidation of a Fe2+‐bearing aluminosilicate (basaltic) melt. Science, 274, 1173–1176. doi: 10.1126/science.274.5290.1173
24 Darken, L., & Gurry, R. W. (1945). The system iron‐oxygen. I. The wüstite field and related equilibria. Journal of the American Chemical Society, 67(8), 1398–1412. https://doi.org/10.1021/ja01224a050
25 Darken, L., & Gurry, R. W. (1946). The system iron—oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. Journal of the American Chemical Society, 68(5), 798–816. https://doi.org/10.1021/ja01209a030
26 Dickson, W. R., & Dismukes, E. B. (1962). The electrolysis of FeO‐CaO‐SiO2 melts. Transactions of the Metallurgical Society of AIME, 224, 505–511.
27 Dancy, E. A., & Derge, G. J. (1966). Electrical conductivity of FeOx‐CaO slags. Transactions of the Metallurgical Society of AIME, 236, 1642.
28 Ellingham, H. J. T. (1944). Reducibility of oxides and sulfides in metallurgical processes. Journal of the Society of Chemical Industry, 63, 125–133.
29 Eugster, H. P. (1957). Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. The Journal of Chemical Physics, 26(6), 1760–1761. https://doi.org/10.1063/1.1743626
30 Eugster, H. P. (1959). Reduction and oxidation in metamorphism. In: Abelson, P. H. (ed.) Researches in Geochemistry. Volume 1. New York: John Wiley & Sons, pp. 397–426.
31 Eugster, H. P. (1977). Compositions and thermodynamics of metamorphic solutions. In: Fraser, D. G. (ed.) Thermodynamics in Geology. Dordrecht: D. Reidel Publishing Company, pp. 183–202.
32 Eugster, H. P., & Wones, D. R. (1962). Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3, 82–125. https://doi.org/10.1093/petrology/3.1.82
33 Feig, S. T., Koepke, J., & Snow, J. E. (2010). Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contributions to Mineralogy and Petrology, 160, 551–568. doi:10.1007/s00410‐010‐0493‐3
34 Fraser, D. G. (1975). Activities of trace elements in silicate melts. Geochimica et Cosmochimica Acta, 39(11), 1525–1530. https://doi.org/10.1016/0016‐7037(75)90154‐4
35 Frost, B. R. (1991). Introduction to oxygen fugacity and its petrologic importance. Reviews in Mineralogy and Geochemistry, 25, 1–9. https://doi.org/10.1515/9781501508684‐004
36 Frost, D. J., & McCammon, C. A. (2008). The redox state of Earth's mantle. Annual Review of Earth and Planetary Science, 36, 389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322
37 Gaillard, F., Scaillet, B., Pichavant, M., & Iacono‐Marziano, G. (2015). The redox geodynamics linking basalts and their mantle sources through space and time. Chemical Geology, 418, 217–233. https://doi.org/10.1016/j.chemgeo.2015.07.030
38 Giggenbach, W. F. (1980). Geothermal gas equilibria. Geochimica et cosmochimica Acta, 44(12), 2021–2032. https://doi.org/10.1016/0016‐7037(80)90200‐8
39 Giggenbach, W. F. (1987). Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry, 2(2), 143–161. https://doi.org/10.1016/0883‐2927(87)90030‐8
40 Gudmundsson, G., & Wood, B. J. (1995). Experimental tests of garnet peridotite oxygen barometry. Contributions to Mineralogy and Petrology, 119(1), 56–67. https://doi.org/10.1007/BF00310717
41 Hasegawa, M. (2014) Ellingham Diagram. Treatise on Process Metallurgy, Volume 3, 507–513. http://dx.doi.org/10.1016/B978‐0‐08‐096986‐2.00032‐1
42 Haskin, L. A., Colson, R. O., Lindstrom, D. J., Lewis, R. H., & Semkow, K. W. (1992, September). Electrolytic smelting of lunar rock for oxygen, iron, and silicon. In: Nasa. Johnson Space Center. The Second Conference on Lunar Bases and Space Activities of the 21st Century, Volume 2, 411–422.
43 Hillert, M., Jansson, B. O., & Sundman, B. O. (1985). A two‐sublattice model for molten solutions with different tendency for ionization. Metallurgical Transactions A, 16(1), 261–266. https://doi.org/10.1007/BF02816052
44 Kress, V. C., & Carmichael, I. S. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108(1–2), 82–92. https://doi.org/10.1007/BF00307328
45 Lavoisier A. (1777) Mémoire sur la combustion en général, Académie des sciences, Mémoires de l’Académie Royale, Paris, 592–600.
46 Le Losq, C., Moretti, R., Oppenheimer, C., & Neuville, D. R. (2020) In situ XANES study of the