Magma Redox Geochemistry. Группа авторов
Читать онлайн книгу.175, 64–77. doi: 10.1007/s00410‐020‐01701‐4
47 Lewis, G. N., & Randall, M. (1961). Thermodynamics, 2nd Edition. Revised By Kenneth Pitzer and Leo Brewer. McGraw‐Hill Book Company. 723pp.
48 Ripley, E. M., & Li, C. (2013). Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni‐Cu‐(PGE) ore genesis? Economic Geology, 108(1), 45–58. https://doi.org/10.2113/econgeo.108.1.45
49 Littlewood, R. (1962). Diagrammatic representation of the thermodynamics of metal‐fused chloride systems. Journal of the Electrochemical Society, 109, 525–534.
50 Magnien, V., Neuville, D. R., Cormier, L., Roux, J., Hazemann, J‐L., Pinet, O., and Richet, P. (2006). Kinetics of iron redox reactions in silicate liquids: a high‐temperature X‐ray absorption and Raman spectroscopy study. Journal of Nuclear Materials, 352, 190–195. https://doi.org/10.1016/j.jnucmat.2006.02.053
51 Magnien, V., Neuville, D. R., Cormier, L., Roux, J., Hazemann, J‐L., de Ligny D., et al. (2008). Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations. Geochimica et Cosmochimica Acta, 72, 2157–2168. https://doi.org/10.1016/j.gca.2008.02.007
52 Mallmann, G., & O’Neill, H. S. C. (2009). The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9), 1765–1794. doi:10.1093/petrology/egp053
53 Mao, H., Hillert, M., Selleby, M., & Sundman, B. (2006). Thermodynamic assessment of the CaO–Al2O3–SiO2 system. Journal of the American Ceramic Society, 89(1), 298–308. https://doi.org/10.1111/j.1551‐2916.2005.00698.x
54 Mattioli, G. S., & Wood, B. J. (1988). Magnetite activities across the MgAl2O4‐Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contributions to Mineralogy and Petrology, 98(2), 148–162. https://doi.org/10.1007/BF00402108
55 Moretti, R. (2005). Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts. Annals of Geophysics, 48, 4/5, 583–608. https://doi.org/10.4401/ag‐3221
56 Moretti, R. (2021). Ionic syntax and equilibrium approach to redox exchanges in melts: basic concepts and the case of iron and sulfur in degassing magmas. In: Moretti, R., and Neuville, D. R. (eds.) Redox Magma Geochemistry. Geophysical Monograph Series 266. American Geophysical Union.
57 Moretti, R., & Baker, D. R. (2008). Modeling of the interplay of fO2 and fS2 along the FeS‐Silicate Melt equilibrium. Chemical Geology, 256, 286–298. doi:10.1016/j.chemgeo.2008.06.055.
58 Moretti, R., & Ottonello, G. (2003). Polymerization and disproportionation of iron and sulfur in silicate melts: insights from an optical basicity‐based approach. Journal of Non‐Crystalline Solids, 323, 111–119. https://doi.org/10.1016/S0022‐3093(03)00297‐7
59 Moretti, R., Arienzo, I., Civetta, L., Orsi, G., & Papale, P. (2013) Multiple magma degassing sources at an explosive volcano. Earth and Planetary Sciences Letters, 367, 95–104. https://doi.org/10.1016/j.epsl.2013.02.013
60 Moretti, R., & Stefánsson, A. (2020). Volcanic and geothermal redox engines. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(3), 179–184. https://doi.org/10.2138/gselements.16.3.179
61 Nadoll, P., Angerer, T., Mauk, J.L., French, D., & Walshe, J. (2014). The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61, 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013
62 Nash, W. M., Smythe, D. J., & Wood, B. J. (2019). Compositional and temperature effects on sulfur speciation and solubility in silicate melts. Earth and Planetary Science Letters, 507, 187–198. https://doi.org/10.1016/j.epsl.2018.12.006
63 Neuville, D. R., Cicconi, M. R., & Le Losq, C. (2021). How to measure the oxidation state of multivalent elements in minerals, glasses and melts? In: Moretti, R., and Neuville, D. R. Magma Redox Geochemistry. Geophysical Monograph Series 266. American Geophysical Union.
64 Ottonello, G. (1997). Principles of Geochemistry. Columbia University Press, 894 pp.
65 Ottonello, G., & Moretti, R. (2004). Lux‐Flood basicity of binary silicate melts. Journal of Physics and Chemistry of Solids, 65(8–9), 1609–1614. https://doi.org/10.1016/j.jpcs.2004.01.012
66 Ottonello, G., Moretti, R., Marini, L., & Zuccolini, M. V. (2001). Oxidation state of iron in silicate glasses and melts: a thermochemical model. Chemical Geology, 174(1–3), 157–179. https://doi.org/10.1016/S0009‐2541(00)00314‐4
67 Pichavant, M., Costa, F., Burgisser, A., Scaillet, B., Martel, C., & Poussineau, S. (2007). Equilibration scales in silicic to intermediate magmas—implications for experimental studies. Journal of Petrology, 48(10), 1955–1972. https://doi.org/10.1093/petrology/egm045
68 Pinet, O., Phalippou, J., & Di Nardo, C. (2006). Modeling the redox equilibrium of the Ce4+/Ce3+ couple in silicate glass by voltammetry. Journal of Non‐Crystalline Solids, 352(50–51), 5382–5390. https://doi.org/10.1016/j.jnoncrysol.2006.08.034
69 Raymond, J., Williams‐Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlın geothermal field, El Salvador; implications for metal transport in natural systems. Journal of Volcanology and Geothermal Research, 145, 81–96. doi: 10.1016/j.jvolgeores.2005.01.003
70 Schreiber, H. D. (1987). An electrochemical series of redox couples in silicate melts: a review and applications to geochemistry. Journal of Geophysical Research: Solid Earth, 92(B9), 9225–9232. https://doi.org/10.1029/JB092iB09p09225
71 Sokhanvaran, S., Lee, S.‐K., Lambotte, G., & Allanore, A. (2016). Electrochemistry of molten sulfides: Copper extraction from BaS‐Cu2S. Journal of The Electrochemical Society, 163, D115–D120.
72 Semkow, K. W., & Haskin, L. A. (1985). Concentrations and behavior of oxygen and oxide ion in melts of composition CaO·MgO·xSiO2. Geochimica et Cosmochimica Acta, 49(9), 1897–1908. https://doi.org/10.1016/0016‐7037(85)90084‐5
73 Toop, G. W., & Samis, C. S. (1962a). Some new ionic concepts of silicate slags. Canadian Metallurgical Quarterly, 1, 129–152. https://doi.org/10.1179/cmq.1962.1.2.129
74 Toop, G. W., & Samis, C. S. (1962b). Activities of ions in silicate melts. Transactions of the Metallurgical Society of AIME, 224, 878–887.
75 Trémillon B. (1974). Chemistry in non‐aqueous solvents. Dordrecht: D. Reidel Publishing Company. 285 pp.
76 Vaughan, D. J. (2005). Minerals/Sulphides. Encyclopedia of Geology. Elsevier. 574–586.
77 Zhang, J., Matsuura, H., & Tsukihashi, F. (2014). Processes for Recycling. Treatise on Process Metallurgy, Volume