Wetland Carbon and Environmental Management. Группа авторов

Читать онлайн книгу.

Wetland Carbon and Environmental Management - Группа авторов


Скачать книгу
C. M., Clark, J. M., Shaw, L. J., Griffiths, R. I., & Evans, C. D. (2020). Effects of acidity on dissolved organic carbon in organic soil extracts, pore water and surface litters. Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.135585

      353 Raghoebarsing, A. A., Pol, A., Van De Pas‐Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921. https://doi.org/10.1038/nature04617

      354 Randerson, J. T., Masiello, C. A., Still, C. J., Rahn, T., Poorter, H., & Field, C. B. (2006). Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Global Change Biology, 12(2), 260–271. https://doi.org/10.1111/j.1365‐2486.2006.01099.x

      355 Raymond, P. A., & Hopkinson, C. S. (2003). Ecosystem modulation of dissolved carbon age in a temperate marsh‐dominated estuary. Ecosystems, 2003(6), 694–705. https://doi.org/10.1007/s10021‐002‐0213‐6

      356 Raymond, P. A., Bauer, J. E., Caraco, N. F., Cole, J. J., Longworth, B., & Petsch, S. T. (2004). Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Marine Chemistry, 92(1‐4 Spec. Iss.), 353–366. https://doi.org/10.1016/j.marchem.2004.06.036

      357 Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of Wetlands: Science and Applications. Boca Raton, FL: CRC Press.

      358 Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8), 597–607. https://doi.org/10.1038/ngeo1830

      359 Reid, M. C., Tripathee, R., Schäfer, K. V. R., & Jaffé, P. R. (2013). Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments. Journal of Geophysical Research: Biogeosciences, 118(4), 1802–1813. https://doi.org/10.1002/2013JG002438

      360 Rejmánková, E., & Houdková, K. (2006). Wetland plant decomposition under different nutrient conditions: What is more important, litter quality or site quality? Biogeochemistry, 80(3), 245–262. https://doi.org/10.1007/s10533‐006‐9021‐y

      361 Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000‐2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas.1510272113

      362 Richardson, C. J. (2003). Pocosins: Hydrologically isolated or integrated wetlands on the landscape? Wetlands, 23(3), 563–576. https://doi.org/10.1672/0277‐5212(2003)023[0563:PHIOIW]2.0.CO;2

      363  Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., & Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 6416(1991), 6413–6416.

      364 Riedel, T., Zak, D., Biester, H., & Dittmar, T. (2013). Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10101–10105. https://doi.org/10.1073/pnas.1221487110

      365 Rixen, T., Baum, A., Wit, F., & Samiaji, J. (2016). Carbon leaching from tropical peat soils and consequences for carbon balances. Frontiers in Earth Science, 4(July). https://doi.org/10.3389/feart.2016.00074

      366 Roden, E. E., & Wetzel, R. G. (1996). Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnology and Oceanography, 41(8), 1733–1748. https://doi.org/10.4319/lo.1996.41.8.1733

      367 Roslev, P., & King, G. M. (1996). Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology, 19(2), 105–115. https://doi.org/10.1016/0168‐6496(95)00084‐4

      368 Roychoudhury, A. N., Kostka, J. E., & Van Cappellen, P. (2003). Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science, 57(5–6), 1183–1193. https://doi.org/10.1016/S0272‐7714(03)00058‐1

      369 Rozsa, R. (1995). Human impacts on tidal wetlands: History and regulations. In G. D. Dreyer & W. A. Niering (Eds.), Tidal Marshes of Long Island Sound: Ecology, History, and Restoration (pp. 42–50). New London, CT: Connecticut College Arboretum.

      370 Rudolph, H., & Samland, J. (1985). Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry, 24(4), 745–749. https://doi.org/10.1016/S0031‐9422(00)84888‐8

      371 Sabine, C. L., Heimann, M., Artaxo, P., Bakker, D. C. E., Chen, C.‐T. A., Field, C. B., et al. (2004). Current status and past trends of the global carbon cycle. In: C. B. Field & M. R. Raupach (Eds.), Global carbon cycle: Integrating humans, climate, and the natural world (pp. 17–44). Washington, D.C.: Island Press.

      372 Sasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land‐use and land‐cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25, 4291–4302. https://doi.org/10.1111/gcb.14774

      373 Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2016). The global methane budget 2000–2012. Earth System Science Data, 8(2), 697–751. https://doi.org/10.5194/essd‐8‐697‐2016

      374 Schindler, D. W., Curtis, P. J., Parker, B. R., & Stainton, M. P. (1996). Consequences of climate warming and lake acidification for UV‐B penetration in North American boreal lakes. Nature, 379(6567), 705–708. https://doi.org/10.1038/379705a0

      375 Schippers, A., & Jørgensen, B. B. (2002). Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta, 66(1), 85–92.

      376 Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386

      377 Segarra, K. E. A., Comerford, C., Slaughter, J., & Joye, S. B. (2013). Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochimica et Cosmochimica Acta, 115, 15–30. https://doi.org/10.1016/j.gca.2013.03.029

      378 Segarra, K. E. A., Schubotz, F., Samarkin, V. A., Yoshinaga, M. Y., Hinrichs, K. U., & Joye, S. B. (2015). High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Communications, 6(May), 1–8. https://doi.org/10.1038/ncomms8477

      379 Segers,


Скачать книгу