Wetland Carbon and Environmental Management. Группа авторов
Читать онлайн книгу.underlying wetland methane fluxes. Biogeochemistry, 41, 23–51. https://doi.org/10.1023/A:1005929032764
380 Selvam, B. P., Lapierre, J. F., Guillemette, F., Voigt, C., Lamprecht, R. E., Biasi, C., et al. (2017). Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat. Scientific Reports, 7, 1–9. https://doi.org/10.1038/srep45811
381 Shibata, H., Petrone, K. C., Hinzman, L. D., & Boone, R. D. (2003). Effect of fire on dissolved organic carbon and inorganic solutes in spruce forest in the permafrost region of interior Alaska. Soil Science and Plant Nutrition, 49(1), 25–29. https://doi.org/10.1080/00380768.2003.10409975
382 Shields, M. R., Bianchi, T. S., Gélinas, Y., Allison, M. A., & Twilley, R. R. (2016). Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 43, 1149–1157. https://doi.org/10.1002/2015GL067388
383 Shuttleworth, E. L., Evans, M. G., Hutchinson, S. M., & Rothwell, J. J. (2015). Peatland restoration: Controls on sediment production and reductions in carbon and pollutant export. Earth Surface Processes and Landforms, 40(4), 459–472. https://doi.org/10.1002/esp.3645
384 Silliman, B. R., Van De Koppel, J., McCoy, M. W., Diller, J., Kasozi, G. N., Earl, K., et al. (2012). Degradation and resilience in Louisiana salt marshes after the BP‐Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11234–11239. https://doi.org/10.1073/pnas.1204922109
385 Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangrove drivers or buffers of coastal acidification? Global Biogeochemical Cycles, (Dic), 753–766. https://doi.org/10.1002/2015GB005324
386 Sippo, J. Z., Maher, D. T., Schulz, K. G., Sanders, C. J., McMahon, A., Tucker, J., & Santos, I. R. (2019). Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochimica et Cosmochimica Acta, 253, 142–158. https://doi.org/10.1016/j.gca.2019.03.003
387 Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J., et al. (2005). Regional scale evidence for improvements in surface water chemistry 1990‐2001. Environmental Pollution, 137(1), 165–176. https://doi.org/10.1016/j.envpol.2004.12.023
388 Smemo, K. A., & Yavitt, J. B. (2007). Evidence for anaerobic CH4 oxidation in freshwater peatlands. Geomicrobiology Journal, 24(7–8), 583–597. https://doi.org/10.1080/01490450701672083
389 Smemo, K. A., & Yavitt, J. B. (2011). Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences, 8(5), 779–793. https://doi.org/10.5194/bgd‐7‐7945‐2010
390 Smith, D. C., Konrad, V., Koulouris, H., Hawes, E., & Borns, H. W. (1989). Salt marshes as a factor in the agricuture of northeastern North America. Agricultural History, 63(2), 270–294.
391 Smith, S. M., & Green, C. W. (2013). Sediment suspension and elevation loss triggered by Atlantic mud fiddler crab (Uca pugnax) bioturbation in salt marsh dieback areas of southern New England. Journal of Coastal Research, 31(1), 88. https://doi.org/10.2112/jcoastres‐d‐12‐00260.1
392 Smith, S. M., Newman, S., Garrett, P. B., & Leeds, J. A. (2001). Differential effects of surface and peat fire on soil constituents in a degraded wetland of the northern Florida Everglades. Journal of Environmental Quality, 30, 1998–2005. https://doi.org/10.2134/jeq2001.1998
393 Smith, T. J., & Odum, W. E. (1981). The effects of grazing by snow geese on coastal salt marshes. Ecology, 62(1), 98–106. https://doi.org/10.2307/1936673
394 Smyth, A. R., Loecke, T. D., Franz, T. E., & Burgin, A. J. (2019). Using high‐frequency soil oxygen sensors to predict greenhouse gas emissions from wetlands. Soil Biology and Biochemistry, 128(July 2018), 182–192. https://doi.org/10.1016/j.soilbio.2018.10.020
395 Song, C., Liu, D., Yang, G., Song, Y., & Mao, R. (2011). Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China. Ecological Engineering, 37(10), 1578–1582. https://doi.org/10.1016/j.ecoleng.2011.03.036
396 Sørensen, J., Christensen, D., & Jørgensen, B. B. (1981). Volatile fatty acids and hydrogen as substrates for sulfate‐reducing bacteria in anaerobic marine sediment. Applied and Environmental Microbiology, 42(1), 5–11. https://doi.org/10.1128/aem.42.1.5‐11.1981
397 Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A., & Hopkinson, C. S. (2019). Global‐change controls on soil‐carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 12(9), 685–692. https://doi.org/10.1038/s41561‐019‐0435‐2
398 Stanley, K. M., Heppell, C. M., Belyea, L. R., Baird, A. J., & Field, R. H. (2019). The importance of CH4 ebullition in floodplain fens. Journal of Geophysical Research: Biogeosciences, 124(7), 1750–1763. https://doi.org/10.1029/2018JG004902
399 Stephens, J. C., Allen Jr., L. H., & Chen, E. (1984). Organic soil subsidence. In: T. L. Holzer (Ed.), Man‐Induced Land Subsidence. Reviews in Engineering Geology Vol 6 (pp. 107–122). Boulder, Colorado: Geological Society of America.
400 Sterner, R. W., & Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, New Jersey: Princeton University Press. https://doi.org/10.1515/9781400885695
401 Strack, M., Waddington, J. M., Bourbonniere, R. A., Buckton, E. L., Shaw, K., Whittington, P., & Price, J. S. (2008). Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes, 22(17), 3373–3385. https://doi.org/10.1002/hyp
402 Straub, K. L., Benz, M., & Schink, B. (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34, 181–186. https://doi.org/10.1111/j.1574‐6941.2001.tb00768.x
403 Streever, W. J. (2000). Spartina alterniflora marshes on dredged material: A critical review of the ongoing debate over success. Wetlands Ecology and Management, 8(5), 295–316. https://doi.org/10.1023/A:1008483203083
404 Sutter, L. A., Perry, J. E., & Chambers, R. M. (2014). Tidal freshwater marsh plant responses to low level salinity increases. Wetlands, 34(1), 167–175. https://doi.org/10.1007/s13157‐013‐0494‐x
405 Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science and Technology, 39(23), 9009–9015.