Высшая математика. Шпаргалка. Аурика Луковкина
Читать онлайн книгу.ограниченна;
3) пусть последовательности {an} и {bn} сходятся и
Теорема сравнения (предельный переход в неравенствах). Пусть заданы последовательности {an}, {bn}. Тогда если последовательности {an}, {bn} таковы, что an ≤ (≥) bn, то
Теорема (принцип двустороннего ограничения). Пусть заданы последовательности {an}, {bn}, {cn}. Тогда если an ≤ bn ≤ cn и последовательности {an} и {cn} сходятся к одному и тому же пределу В, то последовательность {bn} тоже сходится к тому же пределу:
Следствия:
1) если все члены сходящейся последовательности {an} не отрицательны (не положительны), то предел последовательности есть число неотрицательное (неположительное),
2) если все элементы сходящейся последовательности {an} находятся на отрезке [a, b], то и предел этой последовательности {an} лежит на данном отрезке,
3) если все члены сходящейся последовательности {an} an ≤ (і) В, то
Теорема о сходимости монотонной ограниченной последовательности. Всякая неубывающая (невозрастающая) последовательность {an}, ограниченная сверху (снизу) сходится. Иначе для того чтобы монотонная последовательность сходилась необходимо и достаточно, чтобы она была ограниченна.
12. Ряд. Сумма ряда. Сходимость ряда. Арифметические действия над рядами. Ряды с положительными членами
Числовым рядом называется выражение
Частичной суммой ряда (n–ой частичной суммой) называется число Sn = а1 + а2 +…+ аn =
Из частичных сумм можно образовать последовательность S1 = a1, S2 = a1 + a2, S3 = a1 + a2 + a3 и т. д. Если существует предел последовательности частичных сумм ряда, то ряд называется сходящимся, а сам предел называется суммой ряда, обозначается
Теорема. На сходимость ряда не влияет отбрасывание конечного числа его членов. Если ряд сходится, то его n–ый член стремится к нулю при неограниченном возрастании n, т. е.
Теорема. Пусть даны два ряда, имеющие соответствующие суммы