Principles in Microbiome Engineering. Группа авторов
Читать онлайн книгу.from bifidobacteria fermented milk on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). J. Appl. Microbiol. 91 (6): 1110–1117.
72 72 Romond, M.B., Ais, A., Guillemot, F., et al. (1998). Cell‐free whey from milk fermented with Bifidobacterium breve C50 used to modify the colonic microflora of healthy subjects. J. Dairy Sci. 81 (5): 1229–1235.
73 73 Dominika, Ś., Arjan, N., Karyn, R.P., et al. (2011). The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol. 145 (1): 267–272.
74 74 Khan, T.A. and Sievenpiper, J.L. (2016). Controversies about sugars: results from systematic reviews and meta‐analyses on obesity, cardiometabolic disease and diabetes. Eur. J. Nutr. 55 (Suppl. 2): 25–43.
75 75 Jensen, T., Abdelmalek, M.F., Sullivan, S., et al. (2018). Fructose and sugar: a major mediator of non‐alcoholic fatty liver disease. J. Hepatol. 68 (5): 1063–1075.
76 76 Ruxton, C.H., Gardner, E.J., and McNulty, H.M. (2010). Is sugar consumption detrimental to health? A review of the evidence 1995–2006. Crit. Rev. Food Sci. Nutr. 50 (1): 1–19.
77 77 Townsend, G.E., Han, W., Schwalm, N.D., et al. (2019). Dietary sugar silences a colonization factor in a mammalian gut symbiont. Proc. Natl. Acad. Sci. U.S.A. 116 (1): 233–238.
78 78 Di Rienzi, S.C. and Britton, R.A. (2020). Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Adv. Nutr. (Bethesda, MD) 11 (3): 616–629.
79 79 Chai, Y., Beauregard, P.B., Vlamakis, H., et al. (2012). Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. MBio 3 (4): e00184–e00112.
80 80 Tytgat, H.L.P. and de Vos, W.M. (2016). Sugar coating the envelope: glycoconjugates for microbe‐host crosstalk. Trends Microbiol. 24 (11): 853–861.
81 81 Hanuszkiewicz, A., Pittock, P., Humphries, F., et al. (2014). Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J. Biol. Chem. 289 (27): 19231–19244.
82 82 Eid, N., Enani, S., Walton, G., et al. (2014). The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 3: e46.
83 83 Parvin, S., Easmin, D., Sheikh, A., et al. (2015). Nutritional analysis of date fruits (Phoenix dactylifera L.) in perspective of Bangladesh. American Journal of Life Sciences 3: 274–278.
84 84 Francavilla, R., Calasso, M., Calace, L., et al. (2012). Effect of lactose on gut microbiota and metabolome of infants with cow's milk allergy. Pediatr. Allergy Immunol. 23 (5): 420–427.
85 85 Suez, J., Korem, T., Zeevi, D., et al. (2015). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstetrical & Gynecological Survey 70 (1): 31–32.
86 86 Halmos, E.P., Christophersen, C.T., Bird, A.R., et al. (2015). Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64 (1): 93–100.
87 87 Craig, W.J. (2009). Health effects of vegan diets. Am. J. Clin. Nutr. 89 (5): 1627s–1633s.
88 88 Tomova, A., Bukovsky, I., Rembert, E., et al. (2019). The effects of vegetarian and vegan diets on gut microbiota. Front. Nutr. 6: 47.
89 89 Parada Venegas, D., Fuente, M.K.D., Landskron, G., et al. (2019). Short chain fatty acids (SCFAs)‐mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277.
90 90 Glick‐Bauer, M. and Yeh, M.‐C. (2014). The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients 6 (11): 4822–4838.
91 91 Liu, Z., Lin, X.C., Huang, G.W., et al. (2014). Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe 26: 1–6.
92 92 Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., et al. (2011). Dominant and diet‐responsive groups of bacteria within the human colonic microbiota. ISME J. 5 (2): 220–230.
93 93 Hildebrandt, M.A., Hoffmann, C., Sherrill‐Mix, S.A., et al. (2009). High‐fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137 (5): 1716–24.e1‐2.
94 94 Zhang, M. and Yang, X.‐J. (2016). Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J. Gastroenterol. 22 (40): 8905–8909.
95 95 Fava, F., Gitau, R., Griffin, B.A., et al. (2013). The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short‐chain fatty acid excretion in a metabolic syndrome 'at‐risk' population. Int. J. Obes. (Lond) 37 (2): 216–223.
96 96 Wu, G.D., Chen, J., Hoffmann, C., et al. (2011). Linking long‐term dietary patterns with gut microbial enterotypes. Science (New York, NY) 334 (6052): 105–108.
97 97 Cani, P.D., Bibiloni, R., Knauf, C., et al. (2008). Changes in gut microbiota control metabolic endotoxemia‐induced inflammation in high‐fat diet–induced obesity and diabetes in mice. Diabetes 57 (6): 1470–1481.
98 98 Lecomte, V., Kaakoush, N.O., Maloney, C.A., et al. (2015). Changes in gut microbiota in rats fed a high fat diet correlate with obesity‐associated metabolic parameters. PLoS One 10 (5): e0126931.
99 99 Urwin, H.J., Miles, E.A., Noakes, P.S., et al. (2014). Effect of salmon consumption during pregnancy on maternal and infant faecal microbiota, secretory IgA and calprotectin. Br. J. Nutr. 111 (5): 773–784.
100 100 Chen, J., He, X., and Huang, J. (2014). Diet effects in gut microbiome and obesity. J. Food Sci. 79 (4): R442–R451.
101 101 LaMagna, M. (2018). This map shows where the wealthy — and not so wealthy — of the world live. See how much citizens of the wealthiest countries have, compared with the least November 13, 2018. https://www.marketwatch.com/story/this-map-shows-where-the-wealthy-and-not-so-wealthy-of-the-world-live-2018-11-13 (accessed 14 December 2021).
102 102 McLeod, S. (2020). Maslow's hierarchy of needs. Simply Psychology. https://www.simplypsychology.org/maslow.html (accessed 14 December 2021).
103 103 Saravia, L., González‐Zapata, L.I., Rendo‐Urteaga, T., et al. (2018). Development of a food frequency questionnaire for assessing dietary intake in children and adolescents in South America. Obesity (Silver Spring) 26 (Suppl. 1): S31–s40.
104 104 Kolady, D.E., Kattelmann, K., and Scaria, J. (2019). Effects of health‐related claims on millennials' willingness to pay for probiotics in the U.S.: implications for regulation. J. Funct. Foods 60: 103434.
105 105 Engstrand, L. and Lindberg, M. (2013). Helicobacter pylori and the gastric microbiota. Best Pract. Res. Clin. Gastroenterol. 27 (1): 39–45.
106 106 Swidsinski, A., Sydora, B.C., Doerffel, Y., et al. (2007). Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm. Bowel Dis. 13 (8): 963–970.
107 107 Lim, M.Y., Yoon, H.S., Rho, M., et al. (2016). Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans. Sci. Rep. 6: 23745.
108 108 Vallès, Y., Inman, C.K., Peters, B.A., et al. (2018). Types of tobacco consumption and the oral microbiome in the United Arab Emirates Healthy Future (UAEHFS) pilot study. Sci. Rep. 8 (1): 11327.
109 109 Capurso, G. and Lahner, E. (2017). The interaction between smoking, alcohol and the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 31 (5): 579–588.
110 110 Koenig, J.E., Spor, A., Scalfone, N., et al. (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108 (Suppl. 1): 4578–4585.
111 111 Biagi, E., Nylund, L., Candela, M., et al. (2010). Through ageing, and beyond: gut microbiota