DNA Origami. Группа авторов
Читать онлайн книгу.Nature 440: 297–302.
13 13 Wei, B., Dai, M., and Yin, P. (2012). Complex shapes self‐assembled from single‐stranded DNA tiles. Nature 485: 623–626.
14 14 Ando, T., Kodera, N., Takai, E. et al. (2001). A high‐speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America 98: 12468–12472.
15 15 Ando, T., Uchihashi, T., and Scheuring, S. (2014). Filming biomolecular processes by high‐speed atomic force microscopy. Chemical Reviews 114: 3120–3188.
16 16 Rajendran, A., Endo, M., and Sugiyama, H. (2014). State‐of‐the‐art high‐speed atomic force microscopy for investigation of single‐molecular dynamics of proteins. Chemical Reviews 114: 1493–1520.
17 17 Endo, M. and Sugiyama, H. (2014). Single‐molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high‐speed atomic force microscopy. Accounts of Chemical Research 47: 1645–1653.
18 18 Yurke, B., Turberfield, A.J., Mills, A.P. Jr. et al. (2000). A DNA‐fuelled molecular machine made of DNA. Nature 406: 605–608.
19 19 Yan, H., Zhang, X., Shen, Z. et al. (2002). A robust DNA mechanical device controlled by hybridization topology. Nature 415: 62–65.
20 20 Sherman, W.B. and Seeman, N.C. (2004). A precisely controlled DNA biped walking device. Nano Letters 4: 1801–1801.
21 21 Omabegho, T., Sha, R., and Seeman, N.C. (2009). A bipedal DNA Brownian motor with coordinated legs. Science 324: 67–71.
22 22 Douglas, S.M., Dietz, H., Liedl, T. et al. (2009). Self‐assembly of DNA into nanoscale three‐dimensional shapes. Nature 459: 414–418.
23 23 Dietz, H., Douglas, S.M., and Shih, W.M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science 325: 725–730.
24 24 Nummelin, S., Shen, B., Piskunen, P. et al. (2020). Robotic DNA nanostructures. ACS Synthetic Biology 9: 1923–1940.
25 25 Andersen, E.S., Dong, M., Nielsen, M.M. et al. (2009). Self‐assembly of a nanoscale DNA box with a controllable lid. Nature 459: 73–76.
26 26 Takenaka, T., Endo, M., Suzuki, Y. et al. (2014). Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials. Chemistry 20: 14951–14954.
27 27 Ijas, H., Hakaste, I., Shen, B. et al. (2019). Reconfigurable DNA origami nanocapsule for pH‐controlled encapsulation and display of cargo. ACS Nano 13: 5959–5967.
28 28 Douglas, S.M., Bachelet, I., and Church, G.M. (2012). A logic‐gated nanorobot for targeted transport of molecular payloads. Science 335: 831–834.
29 29 Kuzuya, A., Sakai, Y., Yamazaki, T. et al. (2011). Nanomechanical DNA origami 'single‐molecule beacons' directly imaged by atomic force microscopy. Nature Communications 2: 449.
30 30 Marras, A.E., Zhou, L., Su, H.J. et al. (2015). Programmable motion of DNA origami mechanisms. Proceedings of the National Academy of Sciences of the United States of America 112: 713–718.
31 31 Tomaru, T., Suzuki, Y., Kawamata, I. et al. (2017). Stepping operation of a rotary DNA origami device. Chemical Communications (Camb) 53: 7716–7719.
32 32 Wang, J., Yue, L., Li, Z. et al. (2019). Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities. Nature Communications 10: 4963.
33 33 Kuzuya, A., Watanabe, R., Yamanaka, Y. et al. (2014). Nanomechanical DNA origami pH sensors. Sensors (Basel) 14: 19329–19335.
34 34 Willner, E.M., Kamada, Y., Suzuki, Y. et al. (2017). Single‐molecule observation of the photoregulated conformational dynamics of DNA origami nanoscissors. Angewandte Chemie International Edition in English 56: 15324–15328.
35 35 Gerling, T., Wagenbauer, K.F., Neuner, A.M. et al. (2015). Dynamic DNA devices and assemblies formed by shape‐complementary, non‐base pairing 3D components. Science 347: 1446–1452.
36 36 Suzuki, Y., Kawamata, I., Mizuno, K. et al. (2020). Large deformation of a DNA‐origami nanoarm induced by the cumulative actuation of tension‐adjustable modules. Angewandte Chemie International Edition in English 59: 6230–6234.
37 37 Zhong, H. and Seeman, N.C. (2006). RNA used to control a DNA rotary nanomachine. Nano Letters 6: 2899–2903.
38 38 Chakraborty, B., Sha, R., and Seeman, N.C. (2008). A DNA‐based nanomechanical device with three robust states. Proceedings of the National Academy of Sciences of the United States of America 105: 17245–17249.
39 39 Kuzyk, A., Schreiber, R., Zhang, H. et al. (2014). Reconfigurable 3D plasmonic metamolecules. Nature Materials 13: 862–866.
40 40 Mao, C., Sun, W., Shen, Z. et al. (1999). A nanomechanical device based on the B‐Z transition of DNA. Nature 397: 144–146.
41 41 Lu, C.H., Cecconello, A., Elbaz, J. et al. (2013). A three‐station DNA catenane rotary motor with controlled directionality. Nano Letters 13: 2303–2308.
42 42 Asanuma, H., Liang, X., Nishioka, H. et al. (2007). Synthesis of azobenzene‐tethered DNA for reversible photo‐regulation of DNA functions: hybridization and transcription. Nature Protocols 2: 203–212.
43 43 Asanuma, H., Takarada, T., Yoshida, T. et al. (2001). Enantioselective incorporation of a into oligodeoxyribonucleotide for effective photoregulation of duplex formation. Angewandte Chemie International Edition in English 40: 2671–2673.
44 44 Yoshimura, Y. and Fujimoto, K. (2008). Ultrafast reversible photo‐cross‐linking reaction: toward in situ DNA manipulation. Organic Letters 10: 3227–3230.
45 45 Kamiya, Y. and Asanuma, H. (2014). Light‐driven DNA nanomachine with a photoresponsive molecular engine. Accounts of Chemical Research 47: 1663–1672.
46 46 Lohmann, F., Ackermann, D., and Famulok, M. (2012). Reversible light switch for macrocycle mobility in a DNA rotaxane. Journal of the American Chemical Society 134: 11884–11887.
47 47 Yang, Y., Tashiro, R., Suzuki, Y. et al. (2017). A photoregulated DNA‐based rotary system and direct observation of its rotational movement. Chemistry 23: 3979–3985.
48 48 Tashiro, R., Iwamoto, M., Morinaga, H. et al. (2015). Linking two DNA duplexes with a rigid linker for DNA nanotechnology. Nucleic Acids Research 43: 6692–6700.
49 49 Endo, M., Sugita, T., Rajendran, A. et al. (2011). Two‐dimensional DNA origami assemblies using a four‐way connector. Chemical Communications (Camb) 47: 3213–3215.
50 50 Liu, W., Zhong, H., Wang, R. et al. (2011). Crystalline two‐dimensional DNA‐origami arrays. Angewandte Chemie International Edition in English 50: 264–267.
51 51 Rajendran, A., Endo, M., Katsuda, Y. et al. (2011). Programmed two‐dimensional self‐assembly of multiple DNA origami jigsaw pieces. ACS Nano 5: 665–671.
52 52 Woo, S. and Rothemund, P.W. (2011). Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chemistry 3: 620–627.
53 53 Wang, P., Gaitanaros, S., Lee, S. et al. (2016). Programming self‐assembly of DNA origami honeycomb two‐dimensional lattices and plasmonic metamaterials. Journal of the American Chemical Society 138: 7733–7740.
54 54 Tikhomirov, G., Petersen, P., and Qian, L. (2017). Fractal assembly of micrometre‐scale DNA origami arrays with arbitrary patterns. Nature 552: 67–71.
55 55 Wagenbauer, K.F., Sigl, C., and Dietz, H. (2017). Gigadalton‐scale shape‐programmable DNA assemblies. Nature 552: 78–83.
56 56 Oishi, Y., Torii, Y., Kato, T. et al. (1997). Molecular patterning of a guanidinium/orotate mixed monolayer through molecular recognition with flavin adenine dinucleotide. Langmuir 13: 519–524.
57 57 Sun, X., Hyeon Ko, S., Zhang, C. et al. (2009). Surface‐mediated DNA self‐assembly. Journal of the American Chemical Society 131: 13248–13249.
58 58 Aghebat Rafat, A., Pirzer, T., Scheible, M.B. et al. (2014). Surface‐assisted