DNA Origami. Группа авторов
Читать онлайн книгу.C., Ramakrishnan, S., Fricke, S. et al. (2018). Dynamics of DNA origami lattice formation at solid‐liquid interfaces. ACS Applied Materials & Interfaces 10: 44844–44853.
61 61 Johnson‐Buck, A., Jiang, S., Yan, H. et al. (2014). DNA‐cholesterol barges as programmable membrane‐exploring agents. ACS Nano 8: 5641–5649.
62 62 Kocabey, S., Kempter, S., List, J. et al. (2015). Membrane‐assisted growth of DNA origami nanostructure arrays. ACS Nano 9: 3530–3539.
63 63 Czogalla, A., Kauert, D.J., Franquelim, H.G. et al. (2015). Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angewandte Chemie International Edition in English 54: 6501–6505.
64 64 Suzuki, Y., Endo, M., and Sugiyama, H. (2015). Lipid‐bilayer‐assisted two‐dimensional self‐assembly of DNA origami nanostructures. Nature Communications 6: 8052.
65 65 Mingeot‐Leclercq, M.P., Deleu, M., Brasseur, R. et al. (2008). Atomic force microscopy of supported lipid bilayers. Nature Protocols 3: 1654–1659.
66 66 Ramakrishnan, S., Subramaniam, S., Stewart, A.F. et al. (2016). Regular nanoscale protein patterns via directed adsorption through self‐assembled DNA origami masks. ACS Applied Materials & Interfaces 8: 31239–31247.
67 67 Suzuki, Y., Sugiyama, H., and Endo, M. (2018). Complexing DNA origami frameworks through sequential self‐assembly based on directed docking. Angewandte Chemie International Edition in English 57: 7061–7065.
68 68 Lin, T., Yan, J., Ong, L.L. et al. (2018). Hierarchical assembly of DNA nanostructures based on four‐way toehold‐mediated strand displacement. Nano Letters 18: 4791–4795.
69 69 Yang, Y., Endo, M., Hidaka, K. et al. (2012). Photo‐controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. Journal of the American Chemical Society 134: 20645–20653.
70 70 Yang, S., Liu, W., Nixon, R. et al. (2018). Metal‐ion responsive reversible assembly of DNA origami dimers: G‐quadruplex induced intermolecular interaction. Nanoscale 10: 3626–3630.
71 71 Yang, S., Liu, W., and Wang, R. (2019). Control of the stepwise assembly‐disassembly of DNA origami nanoclusters by pH stimuli‐responsive DNA triplexes. Nanoscale 11: 18026–18030.
72 72 Suzuki, Y., Endo, M., Yang, Y. et al. (2014). Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. Journal of the American Chemical Society 136: 1714–1717.
73 73 Kroener, F., Heerwig, A., Kaiser, W. et al. (2017). Electrical actuation of a DNA origami nanolever on an electrode. Journal of the American Chemical Society 139: 16510–16513.
74 74 Kopperger, E., List, J., Madhira, S. et al. (2018). A self‐assembled nanoscale robotic arm controlled by electric fields. Science 359: 296–301.
75 75 Lauback, S., Mattioli, K.R., Marras, A.E. et al. (2018). Real‐time magnetic actuation of DNA nanodevices via modular integration with stiff micro‐levers. Nature Communications 9: 1446.
76 76 Suzuki, Y., Sakai, N., Yoshida, A. et al. (2013). High‐speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Scientific Reports 3: 2131.
77 77 Yoshida, A., Sakai, N., Uekusa, Y. et al. (2018). Morphological changes of plasma membrane and protein assembly during clathrin‐mediated endocytosis. PLoS Biology 16: e2004786.
78 78 Fukuda, S., Uchihashi, T., Iino, R. et al. (2013). High‐speed atomic force microscope combined with single‐molecule fluorescence microscope. The Review of Scientific Instruments 84: 073706.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.