Живи долго! Научный подход к долгой молодости и здоровью. Майкл Грегер

Читать онлайн книгу.

Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер


Скачать книгу
составляет всего 1 %. Десять процентов пожилых людей в возрасте 65 лет и старше страдают от потери выносливости и силы. Столько же человек, переживших рак в детстве, испытывают общую слабость уже в 30-летнем возрасте. Независимо от того, возникает ли это в результате врожденного дефицита репарации ДНК или в результате воздействия генотоксических агентов, последствия избыточного повреждения ДНК, по-видимому, одни и те же: ускоренное старение[1526].

      Окислительный стресс причастен к поседению волос[1527], развитию катаракты, артрита, хрупкости костей, нейродегенеративных, сердечно-сосудистых, почечных и легочных заболеваний[1528], снижению когнитивных способностей, возрастной макулярной дегенерации[1529] и потере мышечной массы[1530]. Ослабление антиоксидантной защиты у мышей приводит к ускоренному снижению слуха, образованию катаракты и дисфункции сердца, в то время как повышение антиоксидантного потенциала оказывает обратное действие[1531] – задерживает развитие возрастных заболеваний[1532]. Таким образом, для увеличения продолжительности жизни может потребоваться подавление образования свободных радикалов или усиление антиоксидантной защиты, которая будет подавлять возникающий оксидантный стресс.

      Наша оригинальная диета

      Согласно базовой концепции палеодиеты, сельскохозяйственная революция, произошедшая за последние 10 000 лет, – это всего лишь эволюционный миг, и люди приспособлены к палеолитическому питанию с большим содержанием постного мяса[1533]. Но зачем на этом останавливаться? Если бы всю нашу эволюционную шкалу уменьшить до года, то последние 200 000 лет каменного века были бы всего лишь несколькими днями, представляющими собой лишь последний 1 % от примерно 20 миллионов лет, в течение которых мы прошли эволюционный путь от нашего общего предка человекообразной обезьяны[1534].

      В период становления – возможно, это 90 % времени нашего существования до того, как мы научились использовать орудия труда, – наши пищевые потребности отражали привычки предков. Тогда мы питались в основном листьями, цветами и фруктами[1535], как и наши сородичи – человекообразные обезьяны[1536]. Это может объяснить, почему овощи и фрукты не только полезны для нас, но и, по сути, жизненно необходимы для выживания[1537].

      Человек – одно из немногих млекопитающих, настолько приспособленных к растительной диете, что если мы не будем есть достаточно овощей и фруктов, то можем умереть от цинги – заболевания, вызванного недостатком витамина С[1538]. Большинство других животных вырабатывают витамин С самостоятельно, но зачем нашему организму тратить на это столько сил, если мы эволюционировали, вися на деревьях и питаясь фруктами и овощами в течение всего дня[1539]?

      Видимо, неслучайно другие млекопитающие, не способные синтезировать собственный


Скачать книгу

<p>1526</p>

Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage – how and why we age? Elife. 2021;10:e62852. https://pubmed.ncbi.nlm.nih.gov/33512317/

<p>1527</p>

Liochev SI. Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal. 2015;23(3):187–207. https://pubmed.ncbi.nlm.nih.gov/24949668/

<p>1528</p>

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

<p>1529</p>

Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617/

<p>1530</p>

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

<p>1531</p>

Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010;48(5):642–55. https://pubmed.ncbi.nlm.nih.gov/20036736/

<p>1532</p>

Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med. 2014;71:368–78. https://pubmed.ncbi.nlm.nih.gov/24704971/

<p>1533</p>

Cannon G. Nutritional science for this century. Public Health Nutr. 2005;8(4):344–7. https://pubmed.ncbi.nlm.nih.gov/15975178/

<p>1534</p>

Andrews P. Last common ancestor of apes and humans: morphology and environment. FPR. 2020;91(2):122–48. https://pubmed.ncbi.nlm.nih.gov/31533109/

<p>1535</p>

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

<p>1536</p>

Milton K. Back to basics: why foods of wild primates have relevance for modern human health. Nutrition. 2000;16(7–8):480–3. https://pubmed.ncbi.nlm.nih.gov/10906529/

<p>1537</p>

Milton K. Hunter-gatherer diets: a different perspective. Am J Clin Nutr. 2000;71(3):665–7. https://pubmed.ncbi.nlm.nih.gov/10702155/

<p>1538</p>

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

<p>1539</p>

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/