NLP без прикрас: Секреты общения с машинным мозгом. Артем Демиденко

Читать онлайн книгу.

NLP без прикрас: Секреты общения с машинным мозгом - Артем Демиденко


Скачать книгу
Для этого был использован набор данных с постами на английском языке. При применении словесной токенизации была достигнута высокая точность в распознавании эмоциональной окраски текста. Однако при использовании символной токенизации точность сильно упала, так как метод не учитывал контекст и особые лексические единицы.

      В частности, фраза "I'm happy!" токенизировалась как ['I', "'", 'm', 'happy', '!'], что приводит к потере смысловой целостности. В этом случае словесная токенизация показала свои преимущества, так как обеспечила корректное распознавание основного эмоционального токена.

      Практические рекомендации по токенизации

      При разработке собственных систем обработки текста важно учитывать следующие рекомендации:

      1. Выбор метода токенизации: Оцените задачи, которые ставятся перед вашей моделью, и выберите соответствующий метод токенизации. Например, для задач классификации текста достаточно словесной токенизации, в то время как для генерации текста могут потребоваться более сложные подходы.

      2. Обработка специальных случаев: Не забудьте учесть специфические случаи в вашем тексте, такие как сокращения, хештеги или эмодзи. Разработка правил для таких случаев может значительно улучшить качество токенизации.

      3. Валидация токенизации: После токенизации важно проверить качество полученных токенов. Это можно сделать, например, с помощью метрик, таких как точность и полнота. Помимо анализа также полезно провести ручную выборку и проанализировать наиболее проблемные места.

      Влияние токенизации на модель

      Токенизация значительно влияет на эффективность моделей, используемых в обработке естественного языка. Если текст был неправильно токенизирован, это может привести к ошибочному обучению модели и, как следствие, к неточным предсказаниям. Например, если в наборе данных с отзывами клиентов слово "хорошо" будет токенизировано в "хоро" и "шо", модель не сможет уловить позитивный смысл данного токена.

      При формулировании корпуса текстов для обучения моделей рекомендуется проводить оценку качества токенизации. Это также включает настройку параметров моделей, которые могут значительно варьироваться в зависимости от выбранного метода токенизации. Эффективная токенизация формирует мощную основу, на которой будут строиться все последующие этапы обработки текста.

      Заключение

      Токенизация является неотъемлемой частью процесса обработки естественного языка, и она требует тщательного подхода и учета специфических нюансов языка. Четкое понимание методов токенизации и их воздействия на качество данных и результаты моделей позволит использовать возможности обработки текста более эффективно. Правильно выполненная токенизация не только облегчает работу моделей, но и закладывает фундамент для успешной реализации проектов в области искусственного интеллекта и анализа текста.

      Разделение текста на части, понятные машинам

      Разделение текста на части, понятные машинам

      Чтобы


Скачать книгу