Connected: The Amazing Power of Social Networks and How They Shape Our Lives. James Fowler
Читать онлайн книгу.complicated phenomena. If we wanted to get people to quit smoking, we would not arrange them in a line and get the first one to quit and tell him to pass it on. Rather, we would surround a smoker with multiple nonsmokers, perhaps in a squad.
Psychologist Stanley Milgram’s famous sidewalk experiment illustrates the importance of reinforcement from multiple people. 12 On two cold winter afternoons in New York City in 1968, Milgram observed the behavior of 1,424 pedestrians as they walked along a fifty-foot length of street. He positioned “stimulus crowds,” ranging in size from one to fifteen research assistants, on the sidewalk. On cue, these artificial crowds would stop and look up at a window on the sixth floor of a nearby building for precisely one minute. There was nothing interesting in the window, just another guy working for Milgram. The results were filmed, and assistants later counted the number of people who stopped or looked where the stimulus crowd was looking. While 4 percent of the pedestrians stopped alongside a “crowd” composed of a single individual looking up, 40 percent stopped when there were fifteen people in the stimulus crowd. Evidently, the decisions of passersby to copy a behavior were influenced by the size of the crowd exhibiting it.
An even larger percentage of pedestrians copied the behavior incompletely: they looked up in the direction of the stimulus crowd’s gaze but did not stop. While one person influenced 42 percent of passersby to look up, 86 percent of the passersby looked up if fifteen people were looking up. More interesting than this difference, however, was that a stimulus crowd of five people was able to induce almost as many passersby to look up as fifteen people did. That is, in this setting, crowds larger than five did not have much more of an effect on the actions of passing individuals.
RULE 5: THE NETWORK HAS A LIFE OF ITS OWN
Social networks can have properties and functions that are neither controlled nor even perceived by the people within them. These properties can be understood only by studying the whole group and its structure, not by studying isolated individuals. Simple examples include traffic jams and stampedes. You cannot understand a traffic jam by interrogating one person fuming at the wheel of his car, even though his immobile automobile contributes to the problem. Complex examples include the notion of culture, or, as we shall see, the fact that groups of interconnected people can exhibit complicated, shared behaviors without explicit coordination or awareness.
Many of the simple examples can be understood best if we completely ignore the will and cognition of the individuals involved and treat people as if they were “zero-intelligence agents.” Consider the human waves at sporting events that first gained worldwide notice during the 1986 World Cup in Mexico. In this phenomenon, originally called La Ola (“the wave”), sequential groups of spectators leap to their feet and raise their arms, then quickly drop back to a seated position. The effect is quite dramatic. A group of physicists who usually study waves on the surface of liquids were sufficiently intrigued that they decided to study a collection of filmed examples of La Ola in enormous soccer stadiums; they noticed that these waves usually rolled in a clockwise direction and consistently moved at a speed of twenty “seats per second.”13
To understand how such human waves start and propagate, the scientists employed mathematical models of excitable media that are ordinarily used to understand inanimate phenomena such as the spread of a fire through a forest or the spread of an electrical signal through cardiac muscle. An excitable medium is one that flips from one state to another (like a tree that is either on fire or not) depending on what others around it are doing (are nearby trees on fire?). And these models yielded accurate predictions of the social phenomenon, suggesting that La Ola could be understood even if we knew nothing about the biology or psychology of humans. Indeed, the wave cannot be understood by studying the actions of a single individual standing up and sitting down. It is not orchestrated by someone with a megaphone atop a cooler. It has a life of its own.
Mathematical models of flocks of birds and schools of fish and swarms of insects that move in unison demonstrate the same point: there is no central control of the movement of the group, but the group manifests a kind of collective intelligence that helps all within it to flee or deter predators. This behavior does not reside within individual creatures but, rather, is a property of groups. Examination of flocks of birds “deciding” where to fly reveals that they move in a way that accounts for the intentions of all the birds, and, even more important, the direction of movement is usually the best choice for the flock. Each bird contributes a bit, and the flock’s collective choice is better than an individual bird’s would be.14 Similar to La Ola and to flocking birds, social networks obey rules of their own, rules that are distinct from the people who form them. But now, people are not having fun in a stadium: they are donating organs or gaining weight or feeling happy.
In this regard, we say that social networks have emergent properties. Emergent properties are new attributes of a whole that arise from the interaction and interconnection of the parts. The idea of emergence can be understood with an analogy: A cake has a taste not found in any one of its ingredients. Nor is its taste simply the average of the ingredients’ flavors—something, say, halfway between flour and eggs. It is much more than that. The taste of a cake transcends the simple sum of its ingredients. Likewise, understanding social networks allows us to understand how indeed, in the case of humans, the whole comes to be greater than the sum of its parts.
Six Degrees of Separation and Three Degrees of Influence
Stanley Milgram masterminded another, much more famous experiment showing that people are all connected to one another by an average of “six degrees of separation” (your friend is one degree from you, your friend’s friend is two degrees, and so on). Milgram’s experiment, conducted in the 1960s, involved giving a few hundred people who lived in Nebraska a letter addressed to a businessman in Boston, more than a thousand miles away.15 They were asked to send the letter to somebody they knew personally. The goal was to get it to someone they thought would be more likely than they to have a personal relationship with the Boston businessman. And the number of hops from person to person that the letter took to reach the target was tracked. On average, six hops were required. This amazing fact initiated a whole set of investigations into the small-world effect originally characterized by de Sola Pool and Kochen, and it entered popular culture too, with John Guare’s play Six Degrees of Separation and even the trivia game Six Degrees of Kevin Bacon.
But some academics were skeptical. For instance, as far apart as Nebraska and Boston might be (both geographically and culturally), they were both inside the United States. So in 2002, physicist-turned-sociologist Duncan Watts and his colleagues Peter Dodds and Roby Muhamad decided to replicate Milgram’s experiment on a global scale using e-mail as the mode by which people communicated.16 They recruited more than ninety-eight thousand subjects (mostly from the United States) to send a message to “targets” around the world by forwarding the e-mail to someone each subject knew who might in turn know the targeted person. Each subject was randomly assigned one target from a list of eighteen possible targets in thirteen countries. The targets included a professor at an Ivy League university, an archival inspector in Estonia, a technology consultant in India, a policeman in Australia, and a veterinarian in the Norwegian army—quite a motley crew. Once again—astonishingly—it took roughly six steps (on average) to get the e-mail to each targeted person, replicating Milgram’s original estimate of just how small the world is.
However, just because we are connected to everyone else by six degrees of separation does not mean that we hold sway over all of these people at any social distance away from us. Our own research has shown that the spread of influence in social networks obeys what we call the Three Degrees of Influence Rule. Everything we do or say tends to ripple through our network, having an impact on our friends (one degree), our friends’ friends (two degrees), and even our friends’ friends’ friends (three degrees). Our influence gradually dissipates and ceases to have a noticeable effect on people