Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов
Читать онлайн книгу.Science Reviews. 152, 99–134. doi: 10.1007/s11214‐010‐9629‐z
9 Birkeland, K. (1908). The Norwegian Aurora Polaris Expedition 1902–1903, vol. 1. New York and Christiania: H. Aschehoug.
10 Borovsky, J. E., Lavraud, B., & Kuznetsova, M. M. (2009). Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere. Journal of Geophysical Research, 114, A03224. doi:10.1029/2009JA014058
11 Bristow, W. A., Otto, A., & Lummerzheim, D. (2001). Substorm convection patterns observed by the super dual auroral radar network. Journal of Geophysical Research, 106, 24,593–24,609.
12 Bristow, W. A., Sofko, G. J., Stenbaek‐Nielsen, H. C., Wei, S., Lummerzheim, D., & Otto, A. (2003). Detailed analysis of substorm observations using SuperDARN, UVI, ground‐based magnetometers, and all‐sky imagers. Journal of Geophysical Research, 108, 1124. doi:10.1029/2002JA009242
13 Browett, S. D., Fear, R. C., Grocott, A., & Milan, S. E. (2017). Timescales for the penetration of IMF By into the Earth's magnetotail. Journal of Geophysical Research Space Physics, 122, 579–593. doi: 10.1002/2016JA023198
14 Burch, J. L. (2000). Image Mission overview. In J. L. Burch (Ed.), The Image Mission. Dordrecht: Springer. doi:10.1007/978‐94‐011‐4233‐5_1
15 Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proceedings of the Physical Society, 43, 26.
16 Chapman, S., & Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36, 77–97. doi:10.1029/TE036i002p00077
17 Chisham, G., et al. (2007). A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophysics, 28, 33–109. doi:10.1007/s10712‐007‐9017‐8
18 Chisham, G., et al. (2008). Remote sensing of the spatial and temporal structure of magnetopause and magnetotail reconnection from the ionosphere. Reviews of Geophysics, 46, RG1004. doi:10.1029/2007RG000223
19 Chisham, G., Freeman, M. P., Abel, G. A., Bristow, W. A., Marchaudon, A., Ruohoniemi, J. M., & Sofko, G. J. (2009). Spatial distribution of average vorticity in the high‐latitude ionosphere and its variation with interplanetary magnetic field direction and season. Journal of Geophysical Research, 114, A09301. doi:10.1029/2009JA014263
20 Clausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., Milan, S. E., & Anderson, B. J. (2012). Dynamics of the region 1 Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Journal of Geophysical Research, 117, A06233. doi:10.1029/2012JA017666.
21 Cowley, S. W. H. (1981a). Magnetospheric and ionospheric flow and the interplanetary magnetic field. In The physical basis of the ionosphere in the solar‐terrestrial system (pp. 4‐1–4‐14). AGARD‐CP‐295.
22 Cowley, S. W. H. (1981b). Magnetospheric asymmetries associated with the Y‐component of the IMF. Planetary and Space Science, 29, 79–96.
23 Cowley, S. W. H. (2000). Magnetosphere‐ionosphere interactions: A tutorial review. In S. Ohtani et al. (Eds.), Magnetospheric current systems (pp. 91–106). Geophysical Monograph Series, vol. 118. Washington, DC: AGU. doi:10.1029/GM118p0091
24 Cowley, S. W. H. (2015). Dungey's Reconnection Model of the Earth's Magnetosphere: The first 40 years. In D. Southwood et al. (Eds.), Magnetospheric plasma physics: The impact of Jim Dungey's research. Astrophysics and Space Science Proceedings, 41, Springer. doi: 10.1007/978‐3‐319‐18359‐6_1
25 Cowley, S. W. H., & Lockwood, M. (1992). Excitation and decay of solar wind‐driven flows in the magnetosphere‐ionosphere system. Annals of Geophysics, 10, 103–115.
26 Cowley, S. W. H., Morelli, J. P., & Lockwood, M. (1991). Dependence of convective flows and particle precipitation in the high‐latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field. Journal of Geophysical Research, 96, 5557–5564.
27 Coxon, J. C., Milan, S. E., Korth, H., & Anderson, B. J. (2018). Ampère's Law: A review of Birkeland current research using the Iridium constellation. In A. Keiling et al. (Eds.), Electric currents in geospace and beyond. Geophysical Monograph Series, vol. 235. Washington, DC: AGU.
28 Cummings, W. D., & Dessler, A. J. (1967). Field‐aligned currents in the magnetosphere. Journal of Geophysical Research, 72, 1007–1013. doi: 10.1029/JZ072i003p01007
29 Davis, T. N., & Sugiura, M. (1966). Auroral electrojet activity index AE and its universal time variations. Journal of Geophysical Research, 71, 785–801.
30 DeJong, A.D., Ridley, A. J., & Clauer, C. R. (2008). Balanced reconnection intervals: Four case studies. Annals of Geophysics, 26, 3897–3912.
31 Dungey, J. W. (1961). Interplanetary magnetic fields and the auroral zones. Physical Review Letters, 6, 47–48.
32 Dungey, J. W. (1963). The structure of the exosphere or adventures in velocity space. In C. DeWitt, J. Hieblot, & L. Le Beau (Eds.), Geophysics, the Earth's environment (pp. 503–550). New York: Gordon and Breach.
33 Erickson, G. M., Spiro, R. W., & Wolf, R. A. (1991). The physics of Harang discontinuity. Journal of Geophysical Research, 96, 1633–1645.
34 Etemadi, A., Cowley, S. W. H., Lockwood, M., Bromage, B. J. I., Willis, D. M., & Luhr, H. (1988). The dependence of high‐latitude dayside ionospheric flows on the north‐south component of the IMF: A high time resolution correlation‐analysis using EISCAT POLAR and AMPTE UKS and IRM data. Planetary and Space Science, 36, 471–498.
35 Evans, J. V., Holt, J. M., Oliver, W. L., & Wand, R. H. (1980). Millstone Hill incoherent scatter observations of auroral convection over 60o < Λ < 75o; 2. Initial results. Journal of Geophysical Research, 85, 41.
36 Fear, R. C., & Milan, S. E. (2012a). The IMF dependence of the local time of transpolar arcs: Implications for formation mechanism. Journal of Geophysical Research, 117, A03213. doi: 10.1029/2011JA017209
37 Fear, R. C., & Milan, S. E. (2012b). Ionospheric flows relating to transpolar arc formation. Journal of Geophysical Research, 117, A09230. doi:10.1029/2012JA017830
38 Fear, R. C., Trenchi, L., Coxon, J. C., & Milan, S. E. (2017). How much flux does a flux transfer event transfer? Journal of Geophysical Research Space Physics, 122. doi:10.1002/2017JA024730
39 Freeman, M. P. (2003). A unified model of the response of ionospheric convection to changes in the interplanetary magnetic field. Journal of Geophysical Research, 108(A1), 1024. doi:10.1029/2002JA009385
40 Freeman, M. P., & Southwood, D. J. (1988). The effect of magnetospheric erosion on mid‐ and high‐latitude ionospheric flows. Planetary and Space Science, 36, 509–522.
41 Frey, H. U., Østgaard, N., Immel, T. J., Korth, H., & Mende, S. B. (2004). Seasonal dependence of localized, high‐latitude dayside aurora (HiLDA). Journal of Geophysical Research, 109, A04303. doi:10.1029/2003JA010293
42 Fukushima, N. (1976). Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform conducting ionosphere. Report of Ionosphere and Space Research in Japan, 30, 35–50.
43 Ganushkina, N. Y., Liemohn, M. W., Dubyagin, S., Daglis, I. A., Dandouras, I., De Zeeuw, D. L., Ebihara, Y, et al. (2015). Defining and resolving current systems in geospace. Annals of Geophysics, 33, 1369–1402. doi: 10.5194/angeo‐33‐1369‐2015
44 Goudarzi, A., Lester, M., Milan, S. E., & Frey, H. U. (2008). Multi‐instrument observations of a transpolar arc in the northern hemisphere. Annals of Geophysics, 26, 201–210.
45 Green, D. L., Waters, C. L., Anderson, B. J., Korth, H., & Barnes, R. J. (2006). Comparison of large‐scale Birkeland currents determined from Iridium and SuperDARN data. Annals of Geophysics, 24, 941–959. doi: 10.5194/angeo‐24‐941‐2006
46 Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., Villain, J.‐P.,