Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов

Читать онлайн книгу.

Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов


Скачать книгу
M., Norqvist, P., Karlsson, T., Nilsson, H., Kullen, A., Imber, S. M., et al. (2015). Azimuthal velocity shear within an Earthward fast flow ‐ further evidence for magnetotail untwisting? Annals of Geophysics, 33, 245–255. doi: 10.5194/angeo‐ 33‐245‐2015

      122 Reiff, P. H., & Burch, J. L. (1985). IMF By‐dependent plasma flow and Birkeland currents in the dayside magnetosphere; 2: A global model for northward and southward IMF. Journal of Geophysical Research, 90, 1595–1609.

      123 Reiff, P. H., Spiro, R. W., & Hill, T. W. (1981). Dependence of polar cap potential drop on interplanetary parameters. Journal of Geophysical Research, 86, 7639–7648. doi:10.1029/JA086iA09p07639

      124 Reistad, J. P., Østgaard, N., Laundal, K. M., Ohma, A., Snekvik, K., Tenfjord, P., et al. (2018). Observations of asymmetries in ionospheric return flow during different levels of geomagnetic activity. Journal of Geophysical Research Space Physics, 123. doi:10.1029/2017JA025051

      125 Reistad, J. P., Østgaard, N., Tenfjord, P., Laundal, K. M., Snekvik, K., Haaland, S., Milan, S. E., et al. (2016). Dynamic effects of restoring footpoint symmetry on closed magnetic field lines. Journal of Geophysical Research Space Physics, 121, 3963–3977. doi:10.1002/2015JA022058.

      126 Rich, F. J., & Hairston, M. (1994). Large‐scale convection patterns observed by DMSP. Journal of Geophysical Research, 99, 3827–3844.

      127 Richmond, A. D., & Kamide, Y. (1988). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique. Journal of Geophysical Research, 93, 5741.

      128 Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. (1997). Ionospheric convection during nonsteady interplanetary magnetic field conditions. Journal of Geophysical Research, 102, 14,563–14,579.

      129 Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. (1998). A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. Journal of Geophysical Research, 103, 4023–4039.

      130 Rostoker, G., Akasofu, S.‐I., Foster, J., Greenwald, R. A., Kamide, Y., Kawasaki, K., Lui, A. T. Y., et al. (1980). Magnetospheric substorms: Definition and signatures. Journal of Geophysical Research, 85, 1663–1668.

      131 Ruohoniemi, J. M., & Greenwald, R. A. (1996). Statistical patterns of high‐latitude convection obtained from Goose Bay HF radar observations. Journal of Geophysical Research, 101, 21743–21763.

      132 Ruohoniemi, J. M., & Greenwald, R. A. (1998). The response of high‐latitude convection to a sudden southward IMF turning. Geophysical Research Letters, 25, 2913–2916.

      133 Ruohoniemi, J. M., Shepherd, S. G., & Greenwald, R. A. (2002). The response of the high‐latitude ionosphere to IMF variations. Journal of Atmospheric and Solar‐Terrestrial Physics, 64, 159–171.

      134 Russell, C. T. (1972). The configuration of the magnetosphere. In E. R. Dyer (Ed.), Critical problems of magnetospheric physics (p. 1). Washington, DC: National Academy of Sciences.

      135 Russell, C. T., & McPherron, R. L. (1973). The magnetotail and substorms. Space Science Reviews, 15, 205.

      136 Senior, C., Cerisier, J.‐C., Rich, F., Lester, M., & Parks, G. K. (2002). Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions, SuperDARN and satellite observations. Annals of Geophysics, 20, 771–779.

      137 Sergeev, V. A. (1977). On the state of the magnetosphere during prolonged periods of southward oriented IMF. Phys. Solariterr. Potsdam, 5, 39.

      138 Sergeev, V. A., Pellinen, R. J., & Pulkkinen, T. I. (1996). Steady magnetospheric convection: A review of recent results. Space Science Reviews, 75, 551–604.

      139 Shepherd, S. G. (2006). Polar cap potential saturation: Observations, theory, and modelling. Journal of Atmospheric and Solar‐Terrestrial Physics, 69, 234–248.

      140 Siscoe, G., Raeder, J., & Ridley, A. J. (2004). Transpolar potential saturation models compared. Journal of Geophysical Research, 109, A09203. doi:10.1029/2003JA010318

      141 Siscoe, G. L., & Huang, T. S. (1985). Polar cap inflation and deflation. Journal of Geophysical Research, 90, 543–547.

      142 Siscoe, G. L., Crooker, N. U., & Siebert, K. D. (2002). Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure. Journal of Geophysical Research, 107(A10), 1321. doi:10.1029/2001JA009176

      143 Sofko, G. J., Greenwald, R., & Bristow, W. (1995). Direct determination of large‐scale magnetospheric field‐aligned currents with SuperDARN. Geophysical Research Letters, 22, 2041–2044.

      144 Stern, D. P. (1973). A study of the electric field in an open magnetospheric model. Journal of Geophysical Research, 78, 7292.

      145 Taguchi, S., & Hoffman, R. A. (1996). Ionospheric plasma convection in the midnight sector for northward interplanetary magnetic field. Journal of Geomagnetism and Geoelectricity, 48(5–6), 925–933.

      146 Taguchi, S., Sugiura, M., Winningham, I., & Slavin, J. A. (1994). By‐controlled convection and field‐aligned currents near midnight auroral oval for northward interplanetary magnetic‐field. Journal of Geophysical Research, 99(A4), 6027–6044.

      147 Tanaka, T. (2001). Interplanetary magnetic field By and auroral conductance effects on high‐latitude ionospheric convection patterns. Journal of Geophysical Research, 106(A11), 24,505–24,516.

      148 Taylor, J. R., Yeoman, T. K., Lester, M., Emery, B. A., & Knipp, D. J. (1996). Variations in the polar cap area during intervals of substorm activity on 20–21 March 1990 deduced from AMIE convection maps. Annals of Geophysics, 14, 879–887.

      149 Tenfjord, P., Østgaard, N., Snekvik, K., Laundal, K. M., Reistad, J., Haaland, S., & Milan, S. E. (2015). How the IMF BY induces a BY component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. Journal of Geophysical Research Space Physics, 120. doi:10.1002/2015JA021579

      150 Thomas, E. G., & Shepherd, S. G. (2018). Statistical patterns of ionospheric convection derived from mid‐latitude, high‐latitude, and polar SuperDARN HF radar observations. Journal of Geophysical Research Space Physics, 123, 3196–3216. doi:10.1002/2018JA025280

      151 Todd, H., Cowley, S. W. H., Lockwood, M., Willis, D. M., & Luhr, H. (1988). Response time of the high latitude dayside ionosphere to sudden changes in the north‐south component of the IMF. Planetary and Space Science, 36, 1415–1428.

      152 Toffoletto, F. R., & Hill, T. W. (1989). Mapping the solar wind electric field to the Earth's polar caps. Journal of Geophysical Research, 94, 329.

      153 Vasyliunas, V. M. (2005). Relation between magnetic fields and electric currents in plasmas. Annals of Geophysics, 23, 2589–2597. doi: 10.5194/angeo‐23‐2589‐2005

      154 Volland, H. (1973). A semiempirical model of large‐scale magnetospheric electric fields. Journal of Geophysical Research, 78, 171–180.

      155 Walach, M.‐T., & Milan, S. E. (2015). Are steady magnetospheric convection events prolonged substorms? Journal of Geophysical Research Space Physics, 120. doi: 10.1002/2014JA020631

      156 Walach, M.‐T., Milan, S. E., Yeoman, T. K., Hubert, B. A., & Hairston, M. R. (2017). Testing nowcasts of the ionospheric convection from the expanding and contracting polar cap model. Space Weather, 15. doi:10.1002/2017SW001615

      157 Watanabe, M., Sato, N., Greenwald, R. A., Pinnock, M., Hairston, M. R., Rairden, R. L., & McEwen, D. J. (2000). The ionospheric response to interplanetary magnetic field variations: Evidence for rapid global change and the role of preconditioning in the magnetosphere. Journal of Geophysical Research, 105, 22,995–22,977.

      158 Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110, A05306. doi:10.1029/2004JA010884

      159 Wild, J. A., Cowley, S. W. H., Davies, J. A., Khan, H., Lester, M., Milan, S. E., Provan, G., et al. (2001). First simultaneous


Скачать книгу