Electromagnetic Metasurfaces. Christophe Caloz
Читать онлайн книгу.target="_blank" rel="nofollow" href="#fb3_img_img_d75ae3ef-c198-5f71-aab1-5673b48c0698.png" alt="StartLayout 1st Row 1st Column nabla times bold upper E Superscript asterisk 2nd Column equals minus bold upper K Superscript asterisk Baseline minus j omega bold upper B Superscript asterisk Baseline comma EndLayout"/>
(2.40b)
Subtracting 2.39a pre-multiplied by
(2.41a)
(2.41b)
Using the identity
(2.42a)
(2.42b)
Subtracting 2.42a from 2.42b yields
(2.43)
We may now integrate this equation over the volume
(2.44)
The surface integral on the left-hand side of (2.44) and the second volume integral on its right-hand side both vanish when integrated over an unbounded medium [28, 81]. This results into
(2.45)
which represents a fundamental relation for reciprocity. We next include the bianisotropic material parameters in this relation. For this purpose, we use the bianisotropic constitutive relations (2.4), which may be explicitly rewritten as
(2.46a)
(2.46b)