Mantle Convection and Surface Expressions. Группа авторов
Читать онлайн книгу.href="https://doi.org/10.1080/14786430701268914">https://doi.org/10.1080/14786430701268914
22 Castelnau, O., Blackman, D. K., Lebensohn, R. A., & Ponte Castañeda, P. (2008). Micromechanical modeling of the viscoplastic behavior of olivine. Journal of Geophysical Research, 113(B9), B09202. https://doi.org/10.1029/2007JB005444
23 Chandler, B. C., Yuan, K., Li, M., Cottaar, S., Romanowicz, B., Tomé, C. N., & Wenk, H. R. (2018). A Refined Approach to Model Anisotropy in the Lowermost Mantle. IOP Conference Series: Materials Science and Engineering, 375(1), 012002. https://doi.org/10.1088/1757‐899X/375/1/012002
24 Chen, J., Weidner, D. J., & Vaughan, M. T. (2002). The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature, 419(6909), 824–826. https://doi.org/10.1038/nature01130
25 Clausen, B., Tomé, C. N., Brown, D. W., & Agnew, S. R. (2008). Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Materialia, 56(11), 2456–2468. https://doi.org/10.1016/J.ACTAMAT.2008.01.057
26 Coble, R. L. (1963). A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. Journal of Applied Physics, 34(6), 1679–1682. https://doi.org/10.1063/1.1702656
27 Copley, S. M., & Pask, J. A. (1965). Plastic Deformation of MgO Single Crystals up to 1600oC. Journal of the American Ceramic Society, 48(3), 139–146. https://doi.org/10.1111/j.1151‐2916.1965.tb16050.x
28 Cordier, P., & Goryaeva, A. (Eds.). (2018). Multiscale modeling of the mantle rheology : the RheoMan project. European research council. Retrieved from https://books.google.com/books?id=8bTRvQEACAAJ&dq=Multiscale+Modeling+of+the+Mantle+Rheology&hl=en&sa=X&ved=0ahUKEwix9_zn9trjAhWBtp4KHVcOAZ0Q6AEIKjAA
29 Cordier, P., Ungár, T., Zsoldos, L., & Tichy, G. (2004). Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature, 428(6985), 837–840. https://doi.org/10.1038/nature02472
30 Cottaar, S., Li, M., McNamara, A. K., Romanowicz, B., & Wenk, H. R. (2014). Synthetic seismic anisotropy models within a slab impinging on the core‐mantle boundary. Geophysical Journal International, 199(1), 164–177. https://doi.org/10.1093/gji/ggu244
31 Creasy, N., Pisconti, A., Long, M. D., Thomas, C., & Wookey, J. (2019). Constraining lowermost mantle anisotropy with body waves: a synthetic modelling study. Geophysical Journal International, 217(2), 766–783. https://doi.org/10.1093/gji/ggz049
32 Cross, A. J., & Skemer, P. (2017). Ultramylonite generation via phase mixing in high‐strain experiments. Journal of Geophysical Research: Solid Earth, 122(3), 1744–1759. https://doi.org/10.1002/2016JB013801
33 Deng, J., & Lee, K. K. M. (2017). Viscosity jump in the lower mantle inferred from melting curves of ferropericlase. Nature Communications, 8(1), 1997. https://doi.org/10.1038/s41467‐017‐02263‐z
34 Dobson, D. P., McCormack, R., Hunt, S. A., Ammann, M. W., Weidner, D., Li, L., & Wang, L. (2012). The relative strength of perovskite and post‐perovskite NaCoF3. Mineralogical Magazine, 76(04), 925–932. https://doi.org/10.1180/minmag.2012.076.4.09
35 Evans, W. J., Yoo, C.‐S., Lee, G. W., Cynn, H., Lipp, M. J., & Visbeck, K. (2007). Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic‐pressure properties of materials. Review of Scientific Instruments, 78(7), 073904. https://doi.org/10.1063/1.2751409
36 Ferré, D., Carrez, P., & Cordier, P. (2007). First principles determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls‐Nabarro model. Physics of the Earth and Planetary Interiors, 163(1–4), 283–291. https://doi.org/10.1016/j.pepi.2007.05.011
37 Ferré, D., Cordier, P., & Carrez, P. (2009). Dislocation modeling in calcium silicate perovskite based on the Peierls‐Nabarro model. American Mineralogist, 94(1), 135–142. https://doi.org/10.2138/am.2009.3003
38 Ferreira, A. M. G., Faccenda, M., Sturgeon, W., Chang, S.‐J., & Schardong, L. (2019). Ubiquitous lower‐mantle anisotropy beneath subduction zones. Nature Geoscience, 12(4), 301–306. https://doi.org/10.1038/s41561‐019‐0325‐7
39 Ford, H. A., & Long, M. D. (2015). A regional test of global models for flow, rheology, and seismic anisotropy at the base of the mantle. Physics of the Earth and Planetary Interiors, 245, 71–75. https://doi.org/10.1016/J.PEPI.2015.05.004
40 French, S. W., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567), 95–99. https://doi.org/10.1038/nature14876
41 Frost, H. J., & Ashby, M. F. (1982). Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press. Retrieved from http://publications.eng.cam.ac.uk/372960/
42 Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11), 5920–5938. https://doi.org/10.1002/2013JB010466
43 Garcés, G., Pérez, P., & Adeva, P. (2005). Effect of the extrusion texture on the mechanical behaviour of Mg–SiCp composites. Scripta Materialia, 52(7), 615–619. https://doi.org/10.1016/J.SCRIPTAMAT.2004.11.024
44 Garcés, G., Rodríguez, M., Pérez, P., & Adeva, P. (2006). Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites. Materials Science and Engineering: A, 419(1–2), 357–364. https://doi.org/10.1016/J.MSEA.2006.01.026
45 Girard, J., Chen, J., & Raterron, P. (2012). Deformation of periclase single crystals at high pressure and temperature: Quantification of the effect of pressure on slip‐system activities. Journal of Applied Physics, 111(11). https://doi.org/10.1063/1.4726200
46 Girard, J., Amulele, G., Farla, R., Mohiuddin, A., & Karato, S. (2016). Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science (New York, N.Y.), 351(6269), 144–7. https://doi.org/10.1126/science.aad3113
47 Goryaeva, A. M., Carrez, P., & Cordier, P. (2015a). Modeling defects and plasticity in MgSiO3 post‐perovskite: Part 1—generalized stacking faults. Physics and Chemistry of Minerals, 42(10), 781–792. https://doi.org/10.1007/s00269‐015‐0762‐9
48 Goryaeva,