Mantle Convection and Surface Expressions. Группа авторов
Читать онлайн книгу.W., Kaercher, P., Lee, K. K. M., & Wenk, H.‐R. (2010). Slip Systems in MgSiO3 Post‐Perovskite: Implications for D” Anisotropy. Science, 329(5999), 1639–1641. https://doi.org/10.1126/science.1192465
130 Miyagi, L., Kanitpanyacharoen, W., Stackhouse, S., Militzer, B., & Wenk, H. R. (2011). The enigma of post‐perovskite anisotropy: Deformation versus transformation textures. Physics and Chemistry of Minerals, 38(9), 665–678. https://doi.org/10.1007/s00269‐011‐0439‐y
131 Miyagi, L., Kanitpanyacharoen, W., Raju, S. V., Kaercher, P., Knight, J., MacDowell, A., et al. (2013). Combined resistive and laser heating technique for in situ radial X‐ray diffraction in the diamond anvil cell at high pressure and temperature. In Review of Scientific Instruments (Vol. 84). https://doi.org/10.1063/1.4793398
132 Miyajima, N., & Walte, N. (2009). Burgers vector determination in deformed perovskite and post‐perovskite of CaIrO3 using thickness fringes in weak‐beam dark‐field images. Ultramicroscopy, 109(6), 683–692. https://doi.org/10.1016/j.ultramic.2009.01.010
133 Miyajima, N., Ohgushi, K., Ichihara, M., & Yagi, T. (2006). Crystal morphology and dislocation microstructures of CaIrO3: A TEM study of an analogue of the MgSiO3 post‐perovskite phase. Geophysical Research Letters, 33(12), 1–4. https://doi.org/10.1029/2005GL025001
134 Miyajima, N., Yagi, T., & Ichihara, M. (2009). Dislocation microstructures of MgSiO3 perovskite at a high pressure and temperature condition. Physics of the Earth and Planetary Interiors, 174(1–4), 153–158. https://doi.org/10.1016/j.pepi.2008.04.004
135 Miyazaki, T., Sueyoshi, K., & Hiraga, T. (2013). Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature, 502(7471), 321–326. https://doi.org/10.1038/nature12570
136 Mohiuddin, A., Long, M. D., & Lynner, C. (2015). Mid‐mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid‐mantle deformation. Physics of the Earth and Planetary Interiors, 245, 1–14. https://doi.org/10.1016/J.PEPI.2015.05.003
137 Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004). Post‐perovskite phase transition in MgSiO3. Science, 304(5672), 855–8. https://doi.org/10.1126/science.1095932
138 Nabarro, F. R. N. (1947). Dislocations in a simple cubic lattice. Proceedings of the Physical Society, 59(2), 256–272. https://doi.org/10.1088/0959‐5309/59/2/309
139 Nabarro, F. R. N. (1948). Deformation of crystals by the motion of single atoms. In Report on a Conference on Strength of Solids (pp. 75–90). London: Physical Society.
140 Nabarro, F. R. N. (1967). Steady‐state diffusional creep. Philosophical Magazine, 16(140), 231–237. https://doi.org/10.1080/14786436708229736
141 Nakagawa, T., & Tackley, P. J. (2011). Effects of low‐viscosity post‐perovskite on thermo‐chemical mantle convection in a 3‐D spherical shell. Geophysical Research Letters, 38(4), L04309. https://doi.org/10.1029/2010GL046494
142 Neil, C. J., Wollmershauser, J. A., Clausen, B., Tomé, C. N., & Agnew, S. R. (2010). Modeling lattice strain evolution at finite strains and experimental verification for copper and stainless steel using in situ neutron diffraction. International Journal of Plasticity, 26(12), 1772–1791. https://doi.org/10.1016/J.IJPLAS.2010.03.005
143 Nisr, C., Ribárik, G., Ungár, T., Vaughan, G. B. M., Cordier, P., & Merkel, S. (2012). High resolution three‐dimensional X‐ray diffraction study of dislocations in grains of MgGeO3 post‐perovskite at 90 GPa. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011JB008401
144 Niwa, K., Yagi, T., Ohgushi, K., Merkel, S., Miyajima, N., & Kikegawa, T. (2007). Lattice preferred orientation in CaIrO3 perovskite and post‐perovskite formed by plastic deformation under pressure. Physics and Chemistry of Minerals, 34(9), 679–686. https://doi.org/10.1007/s00269‐007‐0182‐6
145 Nomura, R., Azuma, S., Uesugi, K., Nakashima, Y., Irifune, T., Shinmei, T., et al. (2017). High‐pressure rotational deformation apparatus to 135 GPa. Review of Scientific Instruments, 88(4), 044501. https://doi.org/10.1063/1.4979562
146 Nowacki, A., Wookey, J., & Kendall, J. M. (2010). Deformation of the lowermost mantle from seismic anisotropy. Nature, 467(7319), 1091–1094. https://doi.org/10.1038/nature09507
147 Nowacki, A., Wookey, J., & Kendall, J. M. (2011). New advances in using seismic anisotropy, mineral physics and geodynamics to understand deformation in the lowermost mantle. Journal of Geodynamics, 52(3–4), 205–228. https://doi.org/10.1016/j.jog.2011.04.003
148 Nowacki, A., Walker, A. M., Wookey, J., & Kendall, J.‐M. (2013). Evaluating post‐perovskite as a cause of D′′ anisotropy in regions of palaeosubduction. Geophysical Journal International, 192(3), 1085–1090. https://doi.org/10.1093/gji/ggs068
149 Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post‐perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430(6998), 445–448. https://doi.org/10.1038/nature02701
150 Oganov, A. R., Martoňák, R., Laio, A., Raiteri, P., & Parrinello, M. (2005). Anisotropy of earth’s D″ layer and stacking faults in the MgSiO3 post‐perovskite phase. Nature, 438(7071), 1142–1144. https://doi.org/10.1038/nature04439
151 Okada, T., Yagi, T., Niwa, K., & Kikegawa, T. (2010). Lattice‐preferred orientations in post‐perovskite‐type MgGeO3 formed by transformations from different pre‐phases. Physics of the Earth and Planetary Interiors, 180(3–4), 195–202. https://doi.org/10.1016/J.PEPI.2009.08.002
152 Van Orman, J. A., Fei, Y., Hauri, E. H., & Wang, J. (2003). Diffusion in MgO at high pressures: Constraints on deformation mechanisms and chemical transport at the core‐mantle boundary. Geophysical Research Letters, 30(2), 26–29. https://doi.org/10.1029/2002GL016343
153 Park, M., & Jung, H. (2017). Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics, 709, 55–68. https://doi.org/10.1016/J.TECTO.2017.04.017
154 Passchier, C. W. (Cees W., & Trouw, R. A. J. (Rudolph A. J. (2005). Microtectonics. Springer.
155 Paterson, M. S., & Weaver, C. W. (1970). Deformation of Polycrystalline Under Pressure. Journal of the American Ceramic Society, 53(8), 463–471.
156 Peierls, R. (1940). The size of a dislocation. Proceedings of the Physical Society, 52(1),