Molecular Mechanisms of Photosynthesis. Robert E. Blankenship

Читать онлайн книгу.

Molecular Mechanisms of Photosynthesis - Robert E. Blankenship


Скачать книгу
are the bryophytes, including the mosses, liverworts, and hornworts. They are in many ways like algae and do not have true roots or leaves, or a vascular (liquid‐transporting) system. They do not produce hard tissues for support. The vascular plants include the ferns and the seed plants. The ferns reproduce by means of spores, and have roots, leaves, and vascular tissues, as well as woody tissues for mechanical support. The seed plants reproduce by means of seeds and also contain roots and leaves, as well as vascular and woody tissues. The seed plants are divided into two groups: gymnosperms and angiosperms. Gymnosperms are the more primitive group and include coniferous trees. Angiosperms, also known as flowering plants, make up the vast majority of the species of plants around us.

      Remarkably, the basic structure of the photosynthetic membrane and the mechanism of photosynthesis are generally similar in all oxygenic photosynthetic organisms. Some cells include novel antenna complexes, and certain regulatory mechanisms are clearly more sophisticated as one moves from cyanobacteria to algae to higher plants. However, the same basic principles and complexes are found throughout this wide range of organisms. It seems that nature perfected the ability to carry out photosynthesis several billion years ago and has not made major alterations since then. Even the anoxygenic photosynthetic bacteria, while clearly much more primitive than oxygenic forms, carry out photosynthesis using the same basic physical principles. As we proceed, we will examine each of these groups, comparing and contrasting them, trying to find common principles, and pointing out significant differences where they occur.

      1 Alberts, B., Johnson, A. D., Lewis, J., Morgan, D., Raff, M., Roberts, K., and Walter, P. (2014) The Molecular Biology of the Cell, 6th Edn. New York: W.W. Norton.

      2 Beatty, J. T., Overmann, J., Lince, M. T., Manske, A. K., Lang, A. S., Blankenship, R. E., Van Dover, C. L., Martinson, T. A., and Plumley, F. G. (2005) An obligately photosynthetic bacterial anaerobe from a deep‐sea hydrothermal vent. Proceedings of the National Academy of Sciences USA 102: 9306–9310.

      3 Blankenship, R. E. (2010) Early evolution of photosynthesis. Plant Physiology 154: 434–438.

      4 Blankenship, R. E., Madigan, M. T., and Bauer, C. E., (eds.) (1995) Anoxygenic Photosynthetic Bacteria. Dordrecht: Kluwer Academic Press.

      5 Bryant, D. A., (ed.) (1994) The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Press.

      6 Bryant, D. A., Costas, A. M., Maresca, J. A., Chew, A. G. M., Klatt, C., Bateson, M. M., Tallon, L. J., Hostetler, J., Nelson, W. C., Heidelberg, J. F., and Ward, D. M. (2007) Candidatus Chloracidobacterium thermophilum: An aerobic phototrophic acidobacterium. Science 317: 523–526.

      7 Cavalier‐Smith, T. (1999) Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. Journal of Eukaryotic Microbiology 46: 347–366.

      8 Chen, M., Schliep, M., Willows, R. D., Cai, Z.‐L., Neilan, B. A., and Scheer, H. (2010) A red‐shifted chlorophyll. Science 329: 1318–1319.

      9 Daum, B. and Kühlbrandt, W. (2011) Electron tomography of plant thylakoid membranes. Journal of Experimenatal Botany 62: 2393–2402.

      10 Doolittle, W. F. (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2128.

      11 Fleischman, D. and Kramer, D. (1998) Photosynthetic rhizobia. Biochimica et Biophysica Acta 1364: 17–36.

      12 Flores, E. and Herrero, A., (eds.) (2014) The Cell Biology of Cyanobacteria. Poole: Caister.

      13 Frigaard, N. U. and Dahl, C. (2009) Sulfur metabolism in phototrophic sulfur bacteria. Advances in Microbial Physiology 54: 103–200.

      14 Fuchs, G. (2011) Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? Annual Review of Microbiology 65: 631–658.

      15 Gest, H. (1994) Discovery of the heliobacteria. Photosynthesis Research 41: 17–21.

      16 Graham, J. E., Wilcox, L. W., and Graham, L. E. (2008) Algae, 2nd Edn. San Francisco: Benjamin Cummings.

      17 Hanada, S. and Pierson, B. K. (2006) The family Chloroflexaceae. In: M. Dworkin, S. Falkow, E. Rosenberg, K.‐H. Schliefer, and E. Stackebrandt, (eds.) The Prokaryotes, 3rd Edn. Berlin: Springer‐Verlag, pp. 815–842.

      18 Hohmann‐Marriott, M. F. and Blankenship, R. E. (2012) The photosynthetic world. In: J. J. Eaton‐Rye, B. C. Tripathy, and T. D. Sharkey, (eds.) Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Dordrecht: Springer.

      19 Hunter, C. N., Daldal, F., Thurnauer, M. C., and Beatty, J. T., (eds.) (2009) The Purple Phototrophic Bacteria. Dordrecht: Springer.

      20 Keeling, P. J. (2013) The number, speed, and impact of plastid Endosymbioses in eukaryotic evolution. Annual Review of Plant Biology 64: 583–607.

      21 Kolber, Z. S., Plumley, F. G., Lang, A. S., Beatty, J. T., Blankenship, R. E., Van Dover, C. L., Vetriani, C., Koblizek, M., Rathgeber, C., and Falkowski, P. G. (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495.

      22 Liberton, M., Austin, J. R., Berg, R. H., and Pakrasi, H. B. (2011) Unique thylakoid membrane architecture of a unicellular N‐2‐fixing cyanobacterium revealed by electron tomography. Plant Physiology 155: 1656–1666.

      23 Liu, D., Zhang, J., Lu, C., Xia, Y., Liu, H., Jiao, N., Xun, L., and Liu, J. (2020) Synechococcus sp. strain PCC7002 uses sulfide: Quinone oxidoreductase to detoxify exogenous sulfide and to convert endogenous sulfide to cellular sulfane sulfur. MBio 11: e03420‐19.

      24 Madigan, M. T. (2006) The family Heliobacteriaceae. In: M. Dworkin, S. Falkow, E. Rosenberg, K.‐H. Schliefer and E. Stackebrandt, (eds.) The Prokaryotes, 3rd Edn. Berlin: Springer‐Verlag, pp. 951–964.

      25 Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., and Stahl, D. (2017) Brock Biology of Microorganisms, 15th Edn. San Francisco: Pearson Benjamin Cummings.

      26 Margulis, L. (1993) Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons. San Francisco: W. H. Freeman.

      27 Matthijs, H. C. P., van der Staay, G. W. M., and Mur, L. R. (1994) Prochorophytes: The ‘other’ cyanobacteria. In: D. Bryant, (ed.) The Molecular Biology of Cyanobacteria. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 49–64.

      28 van de Meene, A. M. L., Hohmann‐Marriott, M. F., Vermaas, W. F. J., and Roberson, R. W. (2006) The three‐dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Archives of Microbiology 184: 259–270.

      29 Miyashita, H., Ikemoto, H., Kurano, N., Ikemoto, H., Chihara, M., and Miyachi, S. (1996) Chlorophyll d as a major pigment. Nature 383: 402.

      30 Nelson, D. L. and Cox, M. M. (2017) Lehninger Principles of Biochemistry, 7th Edn. New York: W. H. Freeman.

      31 Overmann, J. (2006) The family Chlorobiaceae. In: M. Dworkin, S. Falkow, E. Rosenberg, K.‐H. Schliefer, and E. Stackebrandt, (eds.) The Prokaryotes, 3rd Edn. Berlin: Springer‐Verlag, pp. 359–378.

      32 Padan, E. (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Annual Review of Plant Physiology 30: 27–40.

      33 Palenik, B. and Haselkorn, R. (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b‐containing prokaryotes. Nature 355: 265–267.

      34 Partensky, F., Hess, W. R., and Vaulot, D. (1999) Prochlorococcus: A marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews 63: 106–127.

      35 Soucy, S. M., Huang, J., and Gogarten, J. P. (2015) Horizontal gene transfer: Building the web of life. Nature Reviews Genetics 16: 472–482.

      36  Taiz, L., Zeiger, E., Møller, I. M., and Murphy, A. (2018) Fundamentals of Plant Physiology Sunderland. Sunderland, MA: Sinauer Associates.

      37 Tang, K.‐H. and Blankenship, R. E. (2010)


Скачать книгу