Molecular Mechanisms of Photosynthesis. Robert E. Blankenship

Читать онлайн книгу.

Molecular Mechanisms of Photosynthesis - Robert E. Blankenship


Скачать книгу
chemical process. This principle was first clearly set forth in the 1930s by the Dutch microbiologist Cornelis van Niel (1897–1985), working at Stanford University. Van Niel carried out a series of experiments on the metabolic characteristics of non‐oxygen‐evolving (anoxygenic) photosynthetic bacteria (van Niel, 1941). These organisms contain bacteriochlorophylls, pigments related to, but distinct from, the chlorophylls contained in cyanobacteria, algae, and plants. They assimilate CO2 into organic matter, but do not produce molecular oxygen. In order for these bacteria to assimilate CO2, they must be supplied with a reducing compound. Many different compounds will suffice, most notably H2S, which is first oxidized to elemental sulfur and then further oxidized. In place of H2S, a variety of organic compounds can also be utilized, or even molecular hydrogen. Van Niel's seminal contribution was the recognition that these compounds could all be represented by the general formula H2A, and that the overall equation of photosynthesis could be reformulated in a more general way as follows:

      (3.4)equation

      The oxygen‐evolving form of photosynthesis can then be seen as a special case of this more general formulation, in which H2O is H2A and O2 is 2A. When presented in this manner, the redox nature of photosynthesis is much more obvious. In fact, it is a simple further step to separate the oxidation and reduction into two chemical equations, one for the oxidation and the other for the reduction:

       3.7.2 The Hill reaction: separation of oxidation and reduction reactions

      Hill measured the O2 in an ingenious way, which is worth relating if only to give an idea of the remarkable advances made by many of the pioneers of the field despite their primitive instrumentation. Hill obtained whole blood from a slaughterhouse, which has a dark blue color when deoxygenated and bright red color when oxygenated. He combined this with his chloroplast preparation and illuminated the mixture, monitoring the degree of oxygenation of the blood using a hand‐held spectroscope. At first, the results were disappointing, because the sample produced little oxygen. It is now clear that this was because the outer chloroplast envelope membranes were broken during the preparation, and the enzymes needed for CO2 assimilation were lost. In searching for the factors needed to restore the lost activity, Hill made a fundamental discovery: namely, that it was possible to replace the reduction of CO2 with the reduction of artificial electron acceptors, thereby restoring high rates of O2 production. The physiological compound that acts as the light‐driven electron acceptor facilitating CO2 production is NADP+, the oxidized form of nicotinamide adenine dinucleotide phosphate. The reduced form of this compound, NADPH, then serves as the reductant for CO2 assimilation.

      Hill did not set out to discover the reaction that bears his name. Instead, he was trying to establish whether an isolated chloroplast was capable of the complete process of photosynthesis, which was an important issue at the time. In fact, it is quite difficult to isolate chloroplasts with the envelope membranes still intact, and this was not routinely achieved until the mid‐1960s. This is a good example of Louis Pasteur's famous saying that “fortune favors the prepared mind.”


Скачать книгу