Global Drought and Flood. Группа авторов
Читать онлайн книгу.A., Feldman, D., Hoerling, M., Huxman, T., & Lund, J. (2015). Water and climate: Recognize anthropogenic drought. Nature News, 524(7566), 409.
5 AghaKouchak, A., & Mehran, A. (2013). Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resources Research, 49(10), 7144–7149.
6 AghaKouchak, A., Mehran, A., Norouzi, H., & Behrangi, A. (2012). Systematic and random error components in satellite precipitation data sets. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012GL051592
7 AghaKouchak, A., & Nakhjiri, N. (2012). A near real‐time satellite‐based global drought climate data record. Environmental Research Letters, 7(4), 44037.
8 Alborzi, A., Mirchi, A., Moftakhari, H., Mallakpour, I., Alian, S., Nazemi, A., et al. (2018). Climate‐informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts. Environmental Research Letters, 13(8), p.084010.
9 Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684.
10 Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization, Rome.
11 Allen, R.G., Tasumi, M., & Trezza, R. (2007). Satellite‐based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133(4), 380–394.
12 Ambaw, G.M. (2013). Satellite based remote sensing of soil moisture for drought detection and monitoring in the Horn of Africa. PhD thesis, Politecnico di Torino, Turin, Italy.
13 Andela, N., Liu, Y.Y., Van Dijk, A., De Jeu, R.A.M., & McVicar, T.R. (2013). Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences, 10(10), 6657–6676. https://doi.org/10.5194/bg‐10‐6657‐2013
14 Anderson, M., & Kustas, W. (2008). Thermal remote sensing of drought and evapotranspiration. Eos, Transactions American Geophysical Union, 89(26), 233–234.
15 Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., & Kustas, W.P. (2007). A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. Journal of Geophysical Research: Atmospheres, 112(D11).
16 Anderson, M.C., Cammalleri, C., Hain, C.R., Otkin, J., Zhan, X., & Kustas, W. (2013). Using a diagnostic soil‐plant‐atmosphere model for monitoring drought at field to continental scales. Procedia Environmental Sciences, 19, 47–56.
17 Anderson, M.C., Zolin, C.A., Sentelhas, P.C., Hain, C.R., Semmens, K., Yilmaz, M.T., et al. (2016). The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sensing of Environment, 174, 82–99.
18 Anderson, W.B., Zaitchik, B.F., Hain, C.R., Anderson, M.C., Yilmaz, M.T., Mecikalski, J., & Schultz, L. (2012). Towards an integrated soil moisture drought monitor for East Africa. Hydrology and Earth System Sciences, 16(8), 2893–913.
19 Ashouri, H., Hsu, K.‐L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., et al. (2015). PERSIANN‐CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83.
20 Ashraf, S., AghaKouchak, A., Nazemi, A., Mirchi, A., Sadegh, M., Moftakhari, H.R., et al. (2019). Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change, 52, 379–391.
21 Ault, T.R., Cole, J.E., Overpeck, J.T., Pederson, G.T., & Meko, D.M. (2014). Assessing the risk of persistent drought using climate model simulations and paleoclimate data. Journal of Climate, 27(20), 7529–7549. https://doi.org/10.1175/JCLI‐D‐12‐00282.1
22 Beck, H.E., McVicar, T.R., van Dijk, A.I.J.M., Schellekens, J., de Jeu, R.A.M., & Bruijnzeel, L.A. (2011). Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sensing of Environment, 115(10), 2547–2563.
23 Behrangi, A., Tian, Y., Lambrigtsen, B.H., & Stephens, G.L. (2014). What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resources Research, 50(6), 4893–4905.
24 Behrangi, A., Fetzer, E.J., Granger, S.L., Behrangi, A., Fetzer, E.J., Early, S.L.G., et al. (2016). Early detection of drought onset using near surface temperature and humidity observed from space. International Journal of Remote Sensing, 1161,3911–3923. https://doi.org/10.1080/01431161.2016.1204478
25 Bhalme, H.N., & Mooley, D.A. (1980). Large‐scale droughts/floods and monsoon circulation. Monthly Weather Review, 108(8), 1197–1211.
26 Bloomfield, J.P., & Marchant, B.P. (2013). Analysis of groundwater drought building on the standardised precipitation index approach. Hydrology and Earth System Sciences, 17, 4769–4787.
27 Bowman, D.M.J.S., & Johnston, F.H. (2005). Wildfire smoke, fire management, and human health. EcoHealth, 2(1), 76–80.
28 Boyle, J., & Klein, S.A. (2010). Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP‐ICE period. Journal of Geophysical Research: Atmospheres, 115(D23).
29 Brodzik, M.J., Long, D.G., Hardman, M.A., Paget, A. & Armstrong, R.(2016). MEaSUREs Calibrated Enhanced‐Resolution Passive Microwave Daily EASE‐Grid 2.0 Brightness Temperature ESDR, Version 1 (updated 2018). Boulder, CO: NASA NSIDC DAAC. 10.5067/MEASURES/CRYOSPHERE/NSIDC‐0630.001.
30 Brogniez, H., Fallourd, R., Mallet, C., Sivira, R., & Dufour, C. (2016). Estimating confidence intervals around relative humidity profiles from satellite observations: application to the SAPHIR sounder. Journal of Atmospheric and Oceanic Technology, 33(5), 1005–1022. https://doi.org/10.1175/JTECH‐D‐15‐0237.1
31 Brown, J.F., Wardlow, B.D., Tadesse, T., Hayes, M.J., & Reed, B.C. (2008). The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience and Remote Sensing, 45(1), 16–46.
32 Byun, H.‐R., & Wilhite, D.A. (1999). Objective quantification of drought severity and duration. Journal of Climate, 12(9), 2747–2756.
33 Cassou, C., Terray, L., & Phillips, A.S. (2005). Tropical Atlantic influence on European heat waves. Journal of Climate, 18(15), 2805–2811.
34 Chang, K.‐Y., Xu, L., & Starr, G. (2018). A drought indicator reflecting ecosystem responses to water availability: The Normalized Ecosystem Drought Index. Agricultural and Forest Meteorology, 250, 102–117.
35 Chiang, F., Mazdiyasni, O., & AghaKouchak, A. (2018). Amplified warming of droughts in southern United States in observations and model simulations. Science Advances, 4(8), eaat2380.
36 Chikamoto, Y., Timmermann, A., Widlansky, M.J., Balmaseda, M.A., & Stott, L. (2017). Multi‐year predictability of climate, drought, and wildfire in southwestern North America. Nature Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598‐017‐06869‐7
37 Cunha, A.P.M., Alvalá, R.C., Nobre, C.A., & Carvalho, M.A. (2015). Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agricultural and Forest Meteorology, 214–215, 494–505.