Математические модели в естественнонаучном образовании. Том I. Денис Владимирович Соломатин
Читать онлайн книгу.велика, то популяция ниже пропускной способности окружающей среды может за один временной шаг своего развития временно вырасти настолько, что превысит пропускную способность. Как только численность превышает пропускную способность, популяция вымирает достаточно быстро, чтобы к следующему шагу она снова оказалась ниже пропускной способности окружающей среды. Но затем её численность снова вырастет настолько, чтобы превзойти критическое значение. Как будто популяция перенастраивается и адаптируется заново на каждом временном интервале.
Если параметр
Компьютерный эксперимент показывает, что для значений
Эта модель приводит к неожиданному, но интересному выводу: одна и та же популяция может демонстрировать разные циклы в своей численности, даже когда окружающая среда совершенно неизменна. Считая, что теоретические предположения в построении математической модели были верны и популяция имеет достаточно большое значение
Хороший способ понять влияние изменения параметра
with(IterativeMaps):with(ImageTools):
Logistic := Bifurcation([x], [x + r*x*(1 – x)], [0.99], 1.5, 3):
ArrayTools:-Dimensions(Logistic)
ColouringProcedures:-HueToRGB(Logistic):Embed(Logistic)
Рисунок 1.6. Бифуркационная диаграмма логистической модели
Рисунок 1.6 получен следующим образом. Для каждого значения