Genome Engineering for Crop Improvement. Группа авторов

Читать онлайн книгу.

Genome Engineering for Crop Improvement - Группа авторов


Скачать книгу
K.L., Schröder, M., Lombi, E. et al. (2010). NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol. 185: 434–445. https://doi.org/10.1111/j.1469‐8137.2009.03071.x.

      35 Moretto, P. (1996). Nuclear microprobe: a microanalytical technique in biology. Cell. Mol. Biol. (Noisy‐le‐grand) 42: 1–16.

      36 Nakata, Y., Yamada, H., Honda, Y. et al. (2008). Imaging mass spectrometry with swift heavy ions. J. Mass Spectrom. Soc. Jpn. 56: 201–208. https://doi.org/10.5702/massspec.56.201.

      37 Nečemer, M., Kump, P., Ščančar, J. et al. (2008). Application of X‐ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochim. Acta Part B At. Spectrosc. 63: 1240–1247. https://doi.org/10.1016/j.sab.2008.07.006.

      38 Nuñez, J., Renslow, R., Cliff, J.B., and Anderton, C.R. (2018). NanoSIMS for biological applications: current practices and analyses. Biointerphases 13: 03B301. https://doi.org/10.1116/1.4993628.

      39 Perrin, L., Carmona, A., Roudeau, S., and Ortega, R. (2015). Evaluation of sample preparation methods for single cell quantitative elemental imaging using proton or synchrotron radiation focused beams. J. Anal. At. Spectrom. 30: 2525–2532. https://doi.org/10.1039/C5JA00303B.

      40 Persson, D.P., de Bang, T.C., Pedas, P.R. et al. (2016). Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytol. 211: 1255–1265. https://doi.org/10.1111/nph.13989.

      41 Peukert, M., Thiel, J., Mock, H.P. et al. (2016). Spatiotemporal dynamics of oligofructan metabolism and suggested functions in developing cereal grains. Front. Plant Sci. 6 https://doi.org/10.3389/fpls.2015.01245.

      42 Pongrac, P., Vogel‐Mikuš, K., Regvar, M. et al. (2011). Improved lateral discrimination in screening the elemental composition of buckwheat grain by micro‐PIXE. J. Agric. Food Chem. 59: 1275–1280. https://doi.org/10.1021/jf103150d.

      43 Pongrac, P., Kreft, I., Vogel‐Mikus, K. et al. (2013a). Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain. J. R. Soc. Interface 10: 1742–5662. https://doi.org/10.1098/rsif.2013.0296.

      44 Pongrac, P., Vogel‐Mikuš, K., Jeromel, L. et al. (2013b). Spatially resolved distributions of the mineral elements in the grain of tartary buckwheat (Fagopyrum tataricum). Food Res. Int. 54: 125–131. https://doi.org/10.1016/j.foodres.2013.06.020.

      45 Pongrac, P., Kelemen, M., Vavpetič, P. et al. (2020). Application of micro‐PIXE (particle induced X‐ray emission) to study buckwheat grain structure and composition. Fagopyrum 37: 5–10.

      46 Regvar, M., Eichert, D., Kaulich, B. et al. (2011). New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X‐ray microscopy. J. Exp. Bot. 62: 3929–3939. https://doi.org/10.1093/jxb/err090.

      47  Regvar, M., Eichert, D., Kaulich, B. et al. (2013). Biochemical characterization of cell types within leaves of metal‐hyperaccumulating Noccaea praecox (Brassicaceae). Plant Soil 373: 157–171. https://doi.org/10.1007/s11104‐013‐1768‐z.

      48 Rodrigues, E.S., Gomes, M.H.F., Duran, N.M. et al. (2018). Laboratory microprobe X‐ray fluorescence in plant science: emerging applications and case studies. Front. Plant Sci. 871: 1588. https://doi.org/10.3389/fpls.2018.01588.

      49 Römpp, A. and Spengler, B. (2013). Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 139: 759–783. https://doi.org/10.1007/s00418‐013‐1097‐6.

      50 Scheloske, S., Maetz, M., Schneider, T. et al. (2004). Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X‐ray emission. Protoplasma 223: 183–189. https://doi.org/10.1007/s00709‐003‐0027‐1.

      51 Schneider, T., Scheloske, S., Povh, B., and Traxel, K. (2002). A method for cryosectioning of plant roots for proton microprobe analysis. Int. J. PIXE 12: 101–107. https://doi.org/10.1142/S0129083502000196.

      52 Sen Gupta, S., Baksi, A., Roy, P. et al. (2017). Unusual accumulation of silver in the Aleurone layer of an Indian Rice (Oryza sativa) landrace and sustainable extraction of the metal. ACS Sustain. Chem. Eng. 5: 8310–8315. https://doi.org/10.1021/acssuschemeng.7b02058.

      53 Simičič, J., Pelicon, P., Budnar, M., and Šmit, Ž. (2002). The performance of the Ljubljana ion microprobe. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 190: 283–286. https://doi.org/10.1016/S0168‐583X(01)01258‐7.

      54 Singh, S.P., Vogel‐Mikus, K., Arcon, I. et al. (2013). Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. J. Exp. Bot. 64: 3249–3260. https://doi.org/10.1093/jxb/ert160.

      55 Singh, S.P., Vogel‐Mikuš, K., Vavpetič, P. et al. (2014). Spatial X‐ray fluorescence micro‐imaging of minerals in grain tissues of wheat and related genotypes. Planta 240: 277–289. https://doi.org/10.1007/s00425‐014‐2084‐4.

      56 Solé, V.A.A., Papillon, E., Cotte, M. et al. (2007). A multiplatform code for the analysis of energy‐dispersive X‐ray fluorescence spectra. Spectrochim. Acta B At. Spectrosc. 62: 63–68. https://doi.org/10.1016/j.sab.2006.12.002.

      57 Sturtevant, D., Aziz, M., and Chapman, K.D. (2018). Visualizing the oilseed lipidome. Int. News Fats, Oils Relat. Mater. 29: 21–24. https://doi.org/10.21748/inform.04.2018.21.

      58 Tolrà, R., Vogel‐Mikuš, K., Hajiboland, R. et al. (2011). Localization of aluminium in tea (Camellia sinensis) leaves using low energy X‐ray fluorescence spectro‐microscopy. J. Plant Res. 124: 165–172. https://doi.org/10.1007/s10265‐010‐0344‐3.

      59 Van Elteren, J.T., Izmer, A., Šelih, V.S., and Vanhaecke, F. (2016). Novel image metrics for retrieval of the lateral resolution in line scan‐based 2D LA‐ICPMS imaging via an experimental‐modeling approach. Anal. Chem. 88: 7413–7420. https://doi.org/10.1021/acs.analchem.6b02052.

      60 Van Malderen, S.J.M., Managh, A.J., Sharp, B.L., and Vanhaecke, F. (2016). Recent developments in the design of rapid response cells for laser ablation‐inductively coupled plasma‐mass spectrometry and their impact on bioimaging applications. J. Anal. At. Spectrom. 31: 423–439. https://doi.org/10.1039/c5ja00430f.

      61 Vavpetič, P., Kelemen, M., Jenčič,


Скачать книгу