Wetland Carbon and Environmental Management. Группа авторов

Читать онлайн книгу.

Wetland Carbon and Environmental Management - Группа авторов


Скачать книгу
a source of sediments for vertical marsh accretion. Journal of Geophysical Research: Biogeosciences, 123(8), 2444–2465. https://doi.org/10.1029/2017JG004358

      194 Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P., Kostka, J. E., et al. (2020). Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications, 11(1), 4–10. https://doi.org/10.1038/s41467‐020‐16311‐8

      195 Hu, B., Shen, L., Lian, X., Zhu, Q., Liu, S., Huang, Q., et al. (2014). Evidence for nitrite‐dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proceedings of the National Academy of Sciences of the United States of America, 111(12), 4495–4500. https://doi.org/10.1073/pnas.1318393111

      196 Hupp, C. R. (2000). Hydrology, geomorphology and vegetation of Coastal Plain rivers in the south‐eastern USA. Hydrological Processes, 14, 2991–3010. https://doi.org/10.1002/1099‐1085(200011/12)14:16/17<2991::AID‐HYP131>3.0.CO;2‐H

      197 Hupp, C. R., Kroes, D. E., Noe, G. B., Schenk, E. R., & Day, R. H. (2019). Sediment trapping and carbon sequestration in floodplains of the Lower Atchafalaya Basin, LA: allochthonous versus autochthonous carbon sources. Journal of Geophysical Research: Biogeosciences, 124(3), 663–677. https://doi.org/10.1029/2018JG004533

      198 Hutchens, J. J., Batzer, D. P., & Reese, E. (2004). Bioassessment of silvicultural impacts in streams and wetlands of the eastern United States. Water, Air, and Soil Pollution: Focus, 4(1), 37–53. https://doi.org/10.1023/B:WAFO.0000012827.95431.b8

      199 Hutchinson, J. N. (1980). The record of peat wastage in the East Anglian fenlands at Holme Post, 1848–1978 A.D. The Journal of Ecology, 68(1), 229. https://doi.org/10.2307/2259253

      200 Ipsilantis, I., & Sylvia, D. M. (2007). Abundance of fungi and bacteria in a nutrient‐impacted Florida wetland. Applied Soil Ecology, 35(2), 272–280. https://doi.org/10.1016/j.apsoil.2006.09.002

      201 Jackson, C. R., & Vallaire, S. C. (2009). Effects of salinity and nutrients on microbial assemblages in Louisiana wetland sediments. Wetlands, 29(1), 277–287. https://doi.org/10.1672/08‐86.1

      202 Jacob, D. L., Yellick, A. H., Kissoon, L. T. T., Asgary, A., Wijeyaratne, D. N., Saini‐Eidukat, B., & Otte, M. L. (2013). Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA. Environmental Pollution, 178, 211–219. https://doi.org/10.1016/j.envpol.2013.03.005

      203 Jager, D. F., Wilmking, M., & Kukkonen, J. V. K. (2009). The influence of summer seasonal extremes on dissolved organic carbon export from a boreal peatland catchment: Evidence from one dry and one wet growing season. Science of the Total Environment, 407(4), 1373–1382. https://doi.org/10.1016/j.scitotenv.2008.10.005

      204 Jassey, V. E. J., Reczuga, M. K., Zielińska, M., Słowińska, S., Robroek, B. J. M., Mariotte, P., et al. (2018). Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Global Change Biology, 24(3), 972–986. https://doi.org/10.1111/gcb.13928

      205 Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1–2), 5–23. https://doi.org/10.1007/s10584‐006‐9178‐3

      206 Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., et al. (2010). Microbial production of recalcitrant dissolved organic matter: Long‐term carbon storage in the global ocean. Nature Reviews Microbiology, 8(8), 593–599. https://doi.org/10.1038/nrmicro2386

      207 Joabsson, A., Christensen, T. R., & Wallén, B. (1999). Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology and Evolution, 14(10), 385–388. https://doi.org/10.1016/S0169‐5347(99)01649‐3

      208 Johnson, W. C., Millett, B. V, Gilmanov, T., Voldseth, R. A., Guntenspergen, G. R., & Naugle, D. E. (2005). Vulnerability of northern prairie wetlands to climate change. BioScience, 55(10), 863. https://doi.org/10.1641/0006‐3568(2005)055[0863:vonpwt]2.0.co;2

      209 Joosten, H. (2010). The Global Peatland CO2 Picture. Ede, Netherlands. https://doi.org/10.1016/j.quascirev.2011.01.018

      210 Joye, S. B., & Hollibaugh, J. T. (1995). Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science, 270(5236), 623–625.

      211 Jutras, S., Plamondon, A. P., Hökkä, H., & Bégin, J. (2006). Water table changes following precommercial thinning on post‐harvest drained wetlands. Forest Ecology and Management, 235(1–3), 252–259. https://doi.org/10.1016/j.foreco.2006.08.335

      212 Kadlec, R. H., & Reddy, K. R. (2001). Temperature effects in treatment wetlands. Water Environment Research, 73(5), 543–557. https://doi.org/10.2175/106143001X139614

      213 Kaiser, K., & Guggenberger, G. (2000). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31(7–8), 711–725. https://doi.org/10.1016/S0146‐6380(00)00046‐2

      214 Kammann, C., Hepp, S., Lenhart, K., & Müller, C. (2009). Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biology and Biochemistry, 41(3), 622–629. https://doi.org/10.1016/j.soilbio.2008.12.025

      215 Kang, H., Kim, S. Y., Fenner, N., & Freeman, C. (2005). Shifts of soil enzyme activities in wetlands exposed to elevated CO2. Science of the Total Environment, 337(1–3), 207–212. https://doi.org/10.1016/j.scitotenv.2004.06.015

      216 Kao‐Kniffin, J., Freyre, D. S., & Balser, T. C. (2010). Methane dynamics across wetland plant species. Aquatic Botany, 93(2), 107–113. https://doi.org/10.1016/j.aquabot.2010.03.009

      217 Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518–527. https://doi.org/10.1890/13‐0640.1

      218 Keil, R. G., Montluçon, D. B., Prahl, F. G., & Hedges, J. I. (1994). Sorptive preservation of labile organic matter in marine sediments. Nature, 370, 549–552. https://doi.org/doi.org/10.1038/370549a0

      219 Keiluweit, M., Nico, P. S., Kleber, M., & Fendorf, S. (2016). Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry, 127(2–3), 157–171. https://doi.org/10.1007/s10533‐015‐0180‐6

      220 Keller,


Скачать книгу