Wetland Carbon and Environmental Management. Группа авторов
Читать онлайн книгу.K. L. (2009). Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecology and Management, 17(1), 71–84. https://doi.org/10.1007/s11273‐008‐9119‐1
114 Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long‐term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution, 137(1), 55–71. https://doi.org/10.1016/j.envpol.2004.12.031
115 Evans, C. D., Freeman, C., Cork, L. G., Thomas, D. N., Reynolds, B., Billett, M. F., et al. (2007). Evidence against recent climate‐induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophysical Research Letters, 34(7), 1–5. https://doi.org/10.1029/2007GL029431
116 Evans, C. D., Jones, T. G., Burden, A., Ostle, N., Zieliński, P., Cooper, M. D. A., et al. (2012). Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biology, 18(11), 3317–3331. https://doi.org/10.1111/j.1365‐2486.2012.02794.x
117 Evans, C. D., Page, S. E., Jones, T., Moore, S., Gauci, V., Laiho, R., et al. (2014). Contrasting vulnerability of drained tropical and high‐latitude peatlands to fluvial loss of stored carbon. Global Biogeochemical Cycles, 28(11), 1215–1234. https://doi.org/10.1002/2013GB004782
118 Ewing, J. M., & Vepraskas, M. J. (2006). Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands, 26(1), 119–130. https://doi.org/10.1672/0277‐5212(2006)26[119:EPASSI]2.0.CO;2
119 Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T., Cook‐Patton, S. C., et al. (2018). Natural climate solutions for the United States. Science Advances, 4(11), 1–15. https://doi.org/10.1126/sciadv.aat1869
120 Fenner, N., & Freeman, C. (2011). Drought‐induced carbon loss in peatlands. Nature Geoscience, 4(12), 895–900. https://doi.org/10.1038/ngeo1323
121 Fenner, N., & Freeman, C. (2020). Woody litter protects peat carbon stocks during drought. Nature Climate Change, 10(4), 363–369. https://doi.org/10.1038/s41558‐020‐0727‐y
122 Fenner, N., Freeman, C., Lock, M. A., Harmens, H., Reynolds, B., & Sparks, T. (2007). Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science and Technology, 41(9), 3146–3152. https://doi.org/10.1021/es061765v
123 Fetherston, K. L., Naiman, R. J., & Bilby, R. E. (1995). Large woody debris, physical process, and riparian forest development in montane river networks of the Pacific Northwest. Geomorphology, 13(1–4), 133–144. https://doi.org/10.1016/0169‐555X(95)00033‐2
124 Feurdean, A., Gałka, M., Florescu, G., Diaconu, A. C., Tanţău, I., Kirpotin, S., & Hutchinson, S. M. (2019). 2000 years of variability in hydroclimate and carbon accumulation in western Siberia and the relationship with large‐scale atmospheric circulation: A multi‐proxy peat record. Quaternary Science Reviews, 226(2019), 105948. https://doi.org/10.1016/j.quascirev.2019.105948
125 Fey, A., & Conrad, R. (2003). Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil. Soil Biology and Biochemistry, 35, 1–8.
126 Flanagan, N. E., Wang, H., Winton, S., & Richardson, C. J. (2020). Low‐severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Global Change Biology, 26(7), 3930–3946. https://doi.org/10.1111/gcb.15102
127 Frankignoulle, M. (1994). A complete set of buffer factors for acid/base CO2 system in seawater. Journal of Marine Systems, 5(2), 111–118. https://doi.org/10.1016/0924‐7963(94)90026‐4
128 Freeman, C., Lock, M. A., Marxsen, J., & Jones, S. E. (1990). Inhibitory effects of high molecular weight dissolved organic matter upon metabolic processes in biofilms from contrasting rivers and streams. Freshwater Biology, 24(1), 159–166. https://doi.org/10.1111/j.1365‐2427.1990.tb00315.x
129 Freeman, C., Ostle, N., & Kang, H. (2001). An enzymic “latch” on a global carbon store. Nature, 409(6817), 149. https://doi.org/10.1038/35051650
130 Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., & Fenner, N. (2001). Export of organic carbon from peat soils. Nature, 412(6849), 785. https://doi.org/10.1038/35090628
131 Freeman, C., Ostle, N. J., Fenner, N., & Kang, H. (2004). A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry, 36(10), 1663–1667. https://doi.org/10.1016/j.soilbio.2004.07.012
132 Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds, B., et al. (2004). Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430(6996), 195–198. https://doi.org/10.1038/nature02707
133 Freeman, C., Fenner, N., & Shirsat, A. H. (2012). Peatland geoengineering: An alternative approach to terrestrial carbon sequestration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1974), 4404–4421. https://doi.org/10.1098/rsta.2012.0105
134 Frey, K. E., & Smith, L. C. (2005). Amplified carbon release from vast West Siberian peatlands by 2100. Geophysical Research Letters, 32(9), 1–4. https://doi.org/10.1029/2004GL022025
135 Friedrichs, C. T., & Perry, J. E. (2001). Tidal salt marsh morphodynamics: A synthesis. Journal of Coastal Research, Special Issue, 27, 7–37.
136 Fritz, K. A., & Whiles, M. R. (2018). Amphibian‐mediated nutrient fluxes across aquatic–terrestrial boundaries of temporary wetlands. Freshwater Biology, 63(10), 1250–1259. https://doi.org/10.1111/fwb.13130
137 Frolking, S., & Roulet, N. T. (2007). Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology, 13(5), 1079–1088. https://doi.org/10.1111/j.1365‐2486.2007.01339.x
138 Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., & Richard, P. J. H. (2010). A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth System Dynamics, 1(1), 1–21. https://doi.org/10.5194/esd‐1‐1‐2010
139 Galand, P. E., Yrjäl¨a, K., & Conrad, R. (2010). Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences, 7(11), 3893–3900. https://doi.org/10.5194/bg‐7‐3893‐2010
140 Gandois, L., Cobb, A. R.,