Wetland Carbon and Environmental Management. Группа авторов
Читать онлайн книгу.and Biochemistry, 107, 133–143. https://doi.org/10.1016/j.soilbio.2016.11.025
7 Baldock, J. A., Masiello, C. A., Gélinas, Y., & Hedges, J. I. (2004). Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry, 92(1–4 Spec. Iss.), 39–64. https://doi.org/10.1016/j.marchem.2004.06.016
8 Bansal, S., Johnson, O. F., Meier, J., & Zhu, X. (2020). Vegetation affects timing and location of wetland methane emissions. Journal of Geophysical Research: Biogeosciences, 125(9), e2020JG005777. https://doi.org/10.1029/2020jg005777
9 Bartlett, K. B., Harriss, R. C., & Sebacher, D. I. (1985). Methane flux from coastal salt marshes. Journal of Geophysical Research: Atmospheres, 90(D3), 5710–5720. https://doi.org/10.1029/JD090iD03p05710
10 Basiliko, N., Stewart, H., Roulet, N. T., & Moore, T. R. (2012). Do root exudates enhance peat decomposition? Geomicrobiology Journal, 29(4), 374–378. https://doi.org/10.1080/01490451.2011.568272
11 Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese‐ and iron‐dependent marine methane oxidation. Science, 325(5937), 184–187. https://doi.org/10.1126/science.1169984
12 Bedford, B. L., Walbridge, M. R., & Aldous, A. (1999). Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology, 80(7), 2151–2169. https://doi.org/10.1890/0012‐9658(1999)080[2151:PINAAP]2.0.CO;2
13 Beltman, B., Van Den Broek, T., Barendregt, A., Bootsma, M.., & Grootjans, A. P. (2001). Rehabilitation of acidified and eutrophied fens in The Netherlands: Effects of hydrologic manipulation and liming. Ecological Engineering, 17(1), 21–31. https://doi.org/10.1016/S0925‐8574(00)00128‐2
14 Belyea, L. R. (1996). Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos, 77(3), 529. https://doi.org/10.2307/3545942
15 Benner, R., Fogel, M. L., Sprague, E. K., & Hodson, R. E. (1987). Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature, 329, 708–710. https://doi.org/10.1038/329708a0
16 Bernal, B., Megonigal, J. P., & Mozdzer, T. J. (2017). An invasive wetland grass primes deep soil carbon pools. Global Change Biology, 23(5), 2104–2116. https://doi.org/10.1111/gcb.13539
17 Bhadha, J. H., Wright, A. L., & Snyder, G. H. (2009). Everglades Agricultural Area soil subsidence and sustainability. University of Florida, Institute of Food and Agricultural Sciences, publication SL 311.
18 Billett, M. F., & Moore, T. R. (2007). Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrological Processes, 22(12), 2044–2054. https://doi.org/10.1002/hyp.6805
19 Billett, M. F., Palmer, S. M., Hope, D., Deacon, C., Storeton‐West, R., Hargreaves, K. J., et al. (2004). Linking land‐atmosphere‐stream carbon fluxes in a lowland peatland system. Global Biogeochemical Cycles, 18(1), n/a–n/a. https://doi.org/10.1029/2003gb002058
20 Billett, M. F., Garnett, M. H., Dinsmore, K. J., Dyson, K. E., Harvey, F., Thomson, A. M., et al. (2012). Age and source of different forms of carbon released from boreal peatland streams during spring snowmelt in E. Finland. Biogeochemistry, 111(1–3), 273–286. https://doi.org/10.1007/s10533‐011‐9645‐4
21 Blain, D., Murdiyarso, D., Couwenberg, J., Nagata, O., Renou‐Wilson, F., Sirin, A., et al. (2014). Rewetted organic soils. In: T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, B. Jamsranjav, M. Fukuda, & T. Troxler (Eds.), 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands Task Force on National Greenhouse Gas Inventories (p. 42). Geneva, Switzerland: Intergovernmental Panel on Climate Change.
22 Blair, N. E., & Aller, R. C. (2012). The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4(1), 401–423. https://doi.org/10.1146/annurev‐marine‐120709‐142717
23 Blair, N. E., Leithold, E. L., & Aller, R. C. (2004). From bedrock to burial: The evolution of particulate organic carbon across coupled watershed‐continental margin systems. Marine Chemistry, 92(1–4 Spec. Iss.), 141–156. https://doi.org/10.1016/j.marchem.2004.06.023
24 Blazewicz, S. J., Petersen, D. G., Waldrop, M. P., & Firestone, M. K. (2012). Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling. Journal of Geophysical Research: Biogeosciences, 117(2), 1–9. https://doi.org/10.1029/2011JG001864
25 Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea‐level rise. Nature Geoscience, 2(7), 488–491. https://doi.org/10.1038/ngeo553
26 van Bodegom, P. M., Stams, F., Mollema, L., Boeke, S., & Leffelaar, P. (2001). Methane oxidation and the competition for oxygen in the rice rhizosphere. Applied and Environmental Microbiology, 67, 3586–3597. https://doi.org/10.1128/AEM.67.8.3586‐3597.2001
27 van Bodegom, P. M., Broekman, R., Van Dijk, J., Bakker, C., & Aerts, R. (2005). Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands. Biogeochemistry, 76(1), 69–83. https://doi.org/10.1007/s10533‐005‐2053‐x
28 Bodelier, P. L. E. (2011). Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environmental Sustainability, 3(5), 379–388. https://doi.org/10.1016/j.cosust.2011.06.002
29 Bodelier, P. L. E., & Frenzel, P. (1999). Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Applied and Environmental Microbiology, 65(5), 1826–1833. https://doi.org/10.1128/aem.65.5.1826‐1833.1999
30 Bodelier, P. L. E., Roslev, P., Henckel, T., & Frenzel, P. (2000). Stimulation by ammonium‐based fertilizers of methane oxidation in soil around rice roots. Nature, 403(6768), 421–424. https://doi.org/10.1038/35000193
31 Bonnett, S. A. F., Maltby, E., & Freeman, C. (2017). Hydrological legacy determines the type of enzyme inhibition in a peatlands chronosequence. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598‐017‐10430‐x
32 Boye, K., Noël, V., Tfaily, M. M., Bone, S. E., Williams, K. H., Bargar, J. R., & Fendorf, S. (2017). Thermodynamically controlled preservation of organic carbon in floodplains. Nature Geoscience, 10(6), 415–419. https://doi.org/10.1038/ngeo2940
33 Brantley, C. G., Day,