Wetland Carbon and Environmental Management. Группа авторов
Читать онлайн книгу.L. A., Johnson, D. S., Warren, R. S., Peterson, B. J., Fleeger, J. W., Fagherazzi, S., & Wollheim, W. M. (2012). Coastal eutrophication as a driver of salt marsh loss. Nature, 490(7420), 388–392. https://doi.org/10.1038/nature11533
89 DeLaune, R. D., & White, J. R. (2012). Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: A case study of the rapidly subsiding Mississippi River deltaic plain. Climatic Change, 110(1–2), 297–314. https://doi.org/10.1007/s10584‐011‐0089‐6
90 Deverel, S. J., Ingrum, T., & Leighton, D. (2016). Present‐day oxidative subsidence of organic soils and mitigation in the Sacramento‐San Joaquin Delta, California, USA. Hydrogeology Journal, 24(3), 569–586. https://doi.org/10.1007/s10040‐016‐1391‐1
91 Devol, A. H., Richey, J. E., Clark, W. A., King, S. L., & Martinelli, L. A. (1988). Methane emissions to the troposphere from the Amazon floodplain. Journal of Geophysical Research: Atmospheres, 93(D2), 1583–1592. https://doi.org/10.1029/JD093iD02p01583
92 Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R. M., Drewer, J., & Helfter, C. (2010). Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biology, 16(10), 2750–2762. https://doi.org/10.1111/j.1365‐2486.2009.02119.x
93 Dinsmore, K. J., Billett, M. F., & Dyson, K. E. (2013). Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Global Change Biology, 19(7), 2133–2148. https://doi.org/10.1111/gcb.12209
94 Dioumaeva, I., Trumbore, S., Schuur, E. A. G., Goulden, M. L., Litvak, M., & Hirsch, A. I. (2003). Decomposition of peat from upland boreal forest: Temperature dependence and sources of respired carbon. Journal of Geophysical Research: Atmospheres, 108(3), 1–12. https://doi.org/10.1029/2001jd000848
95 Dorodnikov, M., Knorr, K. H., Kuzyakov, Y., & Wilmking, M. (2011). Plant‐mediated CH4 transport and contribution of photosynthates to methanogenesis at a boreal mire: A 14C pulse‐labeling study. Biogeosciences, 8(8), 2365–2375. https://doi.org/10.5194/bg‐8‐2365‐2011
96 Dorrepaal, E., Toet, S., Van Logtestijn, R. S. P., Swart, E., Van De Weg, M. J., Callaghan, T. V., & Aerts, R. (2009). Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460(7255), 616–619. https://doi.org/10.1038/nature08216
97 Doughty, C. L., Langley, J. A., Walker, W. S., Feller, I. C., Schaub, R., & Chapman, S. K. (2016). Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts, 39(2), 385–396. https://doi.org/10.1007/s12237‐015‐9993‐8
98 Drake, B. G. (2014). Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: Review of a 28‐year study. Global Change Biology, 20(11), 3329–3343. https://doi.org/10.1111/gcb.12631
99 Drake, H., & Ivarsson, M. (2018). The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biology Reviews, 32(1), 20–25. https://doi.org/10.1016/j.fbr.2017.10.001
100 Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M., & Striegl, R. G. (2015). Ancient low‐molecular‐weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences of the United States of America, 112(45), 13946–13951. https://doi.org/10.1073/pnas.1511705112
101 Drexler, J. Z., de Fontaine, C. S., & Deverel, S. J. (2009). The legacy of wetland drainage on the remaining peat in the Sacramento San Joaquin Delta, California, USA. Wetlands, 29(1), 372–386. https://doi.org/10.1672/08‐97.1
102 Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid‐base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30(2), 297–306. https://doi.org/doi.org/10.1029/93WR02888
103 Drösler, M., Verchot, L. V, Freibauer, A., Pan, G., Evans, C. D., Bourbonniere, R. A., et al. (2014). Drained inland organic soils. In: T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, B. Jamsranjav, M. Fukuda, & T. Troxler (Eds.), 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands Task Force on National Greenhouse Gas Inventories (p. 79). Geneva, Switzerland: Intergovernmental Panel on Climate Change.
104 Duan, W. M., Hedrick, D. B., Pye, K., Coleman, M. L., & White, D. C. (1996). A preliminary study of the geochemical and microbiological characteristics of modern sedimentary concretions. Limnology and Oceanography, 41(7), 1404–1414. https://doi.org/10.4319/lo.1996.41.7.1404
105 Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3(11), 961–968. https://doi.org/10.1038/nclimate1970
106 Duddleston, K. N., Kinney, M. A., Kiene, R. P., & Hines, M. E. (2002). Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product. Global Biogeochemical Cycles, 16(4), 11‐1–11‐9. https://doi.org/10.1029/2001gb001402
107 Dunfield, P., Knowles, R., Dumont, R., & Moore, T. R. (1993). Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biology and Biochemistry, 25(3), 321–326. https://doi.org/10.1016/0038‐0717(93)90130‐4
108 Dunn, C., Jones, T. G., Roberts, S., & Freeman, C. (2016). Plant species effects on the carbon storage capabilities of a blanket bog complex. Wetlands, 36(1), 47–58. https://doi.org/10.1007/s13157‐015‐0714‐7
109 Egger, M., Rasigraf, O., Sapart, C. J., Jilbert, T., Jetten, M. S. M., Röckmann, T., et al. (2015). Iron‐mediated anaerobic oxidation of methane in brackish coastal sediments. Environmental Science and Technology, 49(1), 277–283. https://doi.org/10.1021/es503663z
110 Emerson, D., Weiss, J. V, & Megonigal, J. P. (1999). Iron‐oxidizing bacteria are associated with ferric hydroxide precipitates (Fe‐plaque) on the roots of wetland plants. Applied and Environmental Microbiology, 65(6), 2758–2761.
111 Enríquez, S., Duarte, C. M., & Sand‐Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N:P content. Oecologia, 94(4), 457–471. https://doi.org/10.1007/BF00566960
112 Erickson, J. E., Megonigal, J. P., Peresta, G., & Drake, B. G. (2007). Salinity and sea level mediate elevated CO2 effects on C3‐C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Global Change Biology, 13, 202–215.