Wetland Carbon and Environmental Management. Группа авторов
Читать онлайн книгу.forested wetland assimilation system in Louisiana. Ecological Engineering, 34(1), 7–22. https://doi.org/10.1016/j.ecoleng.2008.05.004
34 van Breemen, N. (1995). How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10(7), 270–275. https://doi.org/10.1016/0169‐5347(95)90007‐1
35 Bridgham, S. D., & Richardson, C. J. (2003). Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands. Biogeochemistry, 65, 151–178. https://doi.org/10.1023/A:1026026212581
36 Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26(4), 889–916. https://doi.org/10.1672/0277‐5212(2006)26[889:TCBONA]2.0.CO;2
37 Bridgham, S. D., Cadillo‐Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1–22. https://doi.org/10.1111/gcb.12131
38 Brinson, M. M., Lugo, A. E., & Brown, S. (1981). Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics, 12, 123–161. https://doi.org/doi.org/10.1146/annurev.es.12.110181.001011
39 Brooks, M. L., Meyer, J. S., & McKnight, D. M. (2007). Photooxidation of wetland and riverine dissolved organic matter: Altered copper complexation and organic composition. Hydrobiologia, 579(1), 95–113. https://doi.org/10.1007/s10750‐006‐0387‐6
40 Brown, S. L., Gouslbra, C. S., & Evans, M. G. (2019). Controls on fluvial carbon efflux from eroding peatland catchments. Hydrological Processes, 33(3), 361–371. https://doi.org/10.1002/hyp.13329
41 Bruhn, D., Møller, I. M., Mikkelsen, T. N., & Ambus, P. (2012). Terrestrial plant methane production and emission. Physiologia Plantarum, 144(3), 201–209. https://doi.org/10.1111/j.1399‐3054.2011.01551.x
42 Burd, K., Tank, S. E., Dion, N., Quinton, W. L., Spence, C., Tanentzap, A. J., & Olefeldt, D. (2018). Seasonal shifts in export of DOC and nutrients from burned and unburned peatland‐rich catchments, Northwest Territories, Canada. Hydrology and Earth System Sciences, 22(8), 4455–4472. https://doi.org/10.5194/hess‐22‐4455‐2018
43 Burgin, A. J., & Hamilton, S. K. (2008). NO3–‐driven SO42– production in freshwater ecosystems: Implications for N and S cycling. Ecosystems, 11(6), 908–922. https://doi.org/10.1007/s10021‐008‐9169‐5
44 Butman, D., & Raymond, P. A. (2011). Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience, 4(12), 839–842. https://doi.org/10.1038/ngeo1294
45 Cabezas, A., Comín, F. A., & Walling, D. E. (2009). Changing patterns of organic carbon and nitrogen accretion on the middle Ebro floodplain (NE Spain). Ecological Engineering, 35(10), 1547–1558. https://doi.org/10.1016/j.ecoleng.2009.07.006
46 Cai, W.‐J. (2011). Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science, 3(1), 123–145. https://doi.org/10.1146/annurev‐marine‐120709‐142723
47 Cai, W.‐J., & Wang, Y. (1998). The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4), 657–668. https://doi.org/10.4319/lo.1998.43.4.0657
48 Cao, F., Tzortziou, M., Hu, C., Mannino, A., Fichot, C. G., Del Vecchio, R., et al. (2018). Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sensing of Environment, 205(April 2017), 151–165. https://doi.org/10.1016/j.rse.2017.11.014
49 Caplan, J. S., Hager, R. N., Megonigal, J. P., & Mozdzer, T. J. (2015). Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environmental Research Letters, 10(11), 115006. https://doi.org/10.1088/1748‐9326/10/11/115006
50 Carey, E., & Taillefert, M. (2005). The role of soluble Fe(III) in the cycling of iron and sulfur in coastal marine sediments. Limnology and Oceanography, 50(4), 1129–1141. https://doi.org/10.4319/lo.2005.50.4.1129
51 Carlson, K. M., Goodman, L. K., & May‐Tobin, C. C. (2015). Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environmental Research Letters, 10(7), 74006. https://doi.org/10.1088/1748‐9326/10/7/074006
52 Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., & Feller, I. C. (2014). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 723–727. https://doi.org/10.1073/pnas.1315800111
53 Chambers, L. G., Osborne, T. Z., & Reddy, K. R. (2013). Effect of salinity‐altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry. https://doi.org/10.1007/s10533‐013‐9841‐5
54 Chambers, R. M., & Odum, W. E. (1990). Porewater oxidation, dissolved phosphate and the iron curtain: Iron‐phosphorus relations in tidal freshwater marshes. Biogeochemistry, 10, 37–52. https://doi.org/10.1007/BF00000891
55 Chanton, J. P., Martens, C. S., & Kelley, C. A. (1989). Gas transport from methane‐saturated, tidal freshwater and wetland sediments. Limnology and Oceanography, 34(5), 807–819. https://doi.org/10.4319/lo.1989.34.5.0807
56 Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., et al. (2008). Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Global Biogeochemical Cycles, 22(4), 1–11. https://doi.org/10.1029/2008GB003274
57 Chapin, C. T., Bridgham, S. D., & Pastor, J. (2004). pH and nutrient effects on above‐ground net primary production in a Minnesota, USA bog and fen. Wetlands, 24(1), 186–201. https://doi.org/10.1672/0277‐5212(2004)024[0186:PANEOA]2.0.CO;2
58 Chapman, S. K., Hayes, M. A., Kelly, B., & Langley, J. A. (2019). Exploring the oxygen sensitivity of wetland soil carbon mineralization. Biology Letters, 15(1), 20180407. https://doi.org/10.1098/rsbl.2018.0407
59 Chen, C. T. A., Huang, T. H., Chen, Y. C., Bai, Y., He, X., & Kang, Y. (2013). Air‐sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10, 6509–6544.