Динамическое хеджирование: Управление риском простых и экзотических опционов. Нассим Николас Талеб
Читать онлайн книгу.мыслителей нашего времени, чувствовал себя достаточно свободно и комфортно в своей области, чтобы написать понятную книгу по квантовой физике без использования формул.
Часть I
Рынки, инструменты, люди
Глава 1
Введение в торговые инструменты
Настоящее понимание теории означает ‹…› понимание ее как попытки разрешения определенной проблемы.
В этой главе мы кратко рассмотрим торговые инструменты и дадим их основные характеристики. Всем без исключения читателям, даже тем, кто знаком с данной областью, полезно изучить приведенные ниже определения, т. к. они лежат в основе изложенного в книге анализа.
Производные инструменты (деривативы)
■ Дериватив – это актив, цена которого полностью зависит от цены другого актива (называемого базовым активом). Существуют различные категории деривативов, начиная от таких простых, как фьючерс, и заканчивая такими сложными, как экзотические опционы.
Деривативы делятся на две широкие категории – линейные и нелинейные. Линейный дериватив легко хеджируется и полностью уравновешивается противоположной позицией. Нелинейный дериватив демонстрирует серьезную нестабильность (как во времени до истечения, так и в зависимости от цены базового актива) и требует динамического хеджирования.
■ Нелинейный дериватив в отношении какого-либо параметра представляет собой вторую производную (или частную производную по этому параметру), отличную от нуля.
Во врезке «Мастер опционов» ниже приведено графическое представление концепции нелинейности.
Правило управления рисками: цена всех нелинейных деривативов является время-зависимой (изменяется с течением времени).
Это правило управления рисками рассматривается в принципе «загрязнения» (contamination principle) и фигурирует на протяжении всей книги. Пока достаточно сказать, что нелинейность – это гамма (или, в общем виде, выпуклость) и что гамма должна сопровождаться временны́м распадом («рента»).
Мастер опционов: греки
Греки, как их называют опционные трейдеры, характеризуют чувствительность цены опциона по отношению к ряду параметров. Ниже приведены основные определения, используемые в части I. Эти термины более детально рассматриваются в последующих частях.
Дельта – чувствительность цены опциона к изменению цены базового актива.
Гамма – чувствительность дельты опциона к изменению цены базового актива.
Вега – чувствительность цены опциона к изменению подразумеваемой волатильности.
Тета – ожидаемое изменение цены опциона с течением времени при отсутствии риска изменения цены базового актива.
Ро – коэффициентом ро (Rho) обычно принято характеризовать изменение цены опциона по отношению к процентным ставкам.
«Длинная