Optical Engineering Science. Stephen Rolt
Читать онлайн книгу.1.10 Angular magnification and nodal points.Figure 1.11 Generalised object and image.Figure 1.12 Refraction at a plane surface.Figure 1.13 Refraction at a spherical surface.Figure 1.14 Refraction by two spherical surfaces (lens).Figure 1.15 Reflection at a plane surface.Figure 1.16 Reflection from a curved surface.Figure 1.17 Complex optical system.Figure 1.18 Modelling of complex systems.Figure 1.19 Thick lens.Figure 1.20 Hubble space telescope schematic.
2 Chapter 2Figure 2.1 Aperture stop.Figure 2.2 Location of entrance and exit pupils.Figure 2.3 Cooke triplet.Figure 2.4 Optical system with a telecentric output.Figure 2.5 Vignetting.Figure 2.6 (a) Tangential ray fan; (b) Sagittal ray fan.Figure 2.7 Simple magnifying lens.Figure 2.8 Compound microscope.Figure 2.9 Basic optical telescope.Figure 2.10 Basic camera.
3 Chapter 3Figure 3.1 (a) Gaussian imaging. (b) Impact of aberration.Figure 3.2 Transverse and longitudinal aberration.Figure 3.3 (a) Ray fan for pure third order aberration. (b) Ray fan with third...Figure 3.4 Balancing defocus against aberration – optimal focal position.Figure 3.5 Illustration of optical path difference.Figure 3.6 Wavefront representation of aberration.Figure 3.7 Simplified wavefront and ray geometry.Figure 3.8 Quartic OPD fan.Figure 3.9 OPD fan with balancing defocus.Figure 3.10 (a) Generic layout. (b) Layout with y co-ordinate transformation....Figure 3.11 Geometrical spot associated with spherical aberration.Figure 3.12 OPD fan for coma.Figure 3.13 Ray fan for coma.Figure 3.14 Geometrical spot for coma.Figure 3.15 Field curvature.Figure 3.16 Ray fan plots illustrating field curvature.Figure 3.17 Ray fan for astigmatism showing tangential and sagittal fans.Figure 3.18 Geometric spot vs. defocus for astigmatism.Figure 3.19 (a) Pincushion (positive) distortion. (b) Barrel (negative) distor...
4 Chapter 4Figure 4.1 Calculation of OPD for refractive surface.Figure 4.2 Aplanatic points for refraction at single spherical surface.Figure 4.3 Hyperhemisphere objective.Figure 4.4 Field curvature for single refraction.Figure 4.5 Reflection at spherical mirror.Figure 4.6 Petzval curvature for mirror.Figure 4.7 Spherical aberration in cover slip.Figure 4.8 Aberration analysis for thin lens.Figure 4.9 Conjugate parameter.Figure 4.10 Coddington lens shape parameter.Figure 4.11 Spherical aberration vs. shape parameter for a thin lens.Figure 4.12 Coma vs lens shape for various conjugate parameters.Figure 4.13 Spherical aberration vs shape factor for various conjugate paramet...Figure 4.14 Aplanatic meniscus lens.Figure 4.15 Impact of stop movement.Figure 4.16 Simple symmetric lens system with stop shift.Figure 4.17 Impact of stop shift for simple symmetric lens system.Figure 4.18 Abbe sine condition.Figure 4.19 Fulfilment of Abbe sine condition for aplanatic meniscus lens.Figure 4.20 Refractive index variation with wavelength for SCHOTT BK7 glass ma...Figure 4.21 Longitudinal chromatic aberration.Figure 4.22 Transverse chromatic aberration.Figure 4.23 Huygens eyepiece.Figure 4.24 Abbe diagram.Figure 4.25 The achromatic doublet.Figure 4.26 Secondary colour.Figure 4.27 Plot of partial dispersion against Abbe number.Figure 4.28 Contribution of different aberrations vs. numerical aperture for 2...
5 Chapter 5Figure 5.1 Ellipsoid of revolution.Figure 5.2 Single refractive surface at infinite conjugate.Figure 5.3 Simple two lens system employing aspheric components.Figure 5.4