Optical Engineering Science. Stephen Rolt
Читать онлайн книгу.target="_blank" rel="nofollow" href="#ulink_52c298cf-c8e9-56cd-b00d-9be07be45ec8">Figure 5.5 Fifth order Zernike polynomial and aberration balancing.
6 Chapter 6Figure 6.1 Conceptual illustration of Huygens' principle.Figure 6.2 Huygens secondary wave geometry.Figure 6.3 Geometry for Rayleigh diffraction equation of the first kind.Figure 6.4 Far field diffraction.Figure 6.5 Far field diffraction of laser beam emerging from fibre.Figure 6.6 Imaging of a Fraunhofer diffraction pattern by a simple lens.Figure 6.7 Diffraction of evenly illuminated pupil.Figure 6.8 Airy disc.Figure 6.9 Graphical trace of Airy disc.Figure 6.10 The Rayleigh criterion and ideal diffraction limited resolution.Figure 6.11 Profile of two point sources just resolved under Rayleigh criterio...Figure 6.12 Gaussian beam.Figure 6.13 Form of expanding Gaussian beam and beam waist.Figure 6.14 A selection of low order Hermite polynomials.Figure 6.15 Fresnel integral and Cornu spiral.Figure 6.16 Fresnel diffraction at 100 mm from 2 mm Slit – λ = 500 nm.Figure 6.17 Geometric spots for spherical aberration and coma.Figure 6.18 OPD map across pupil.Figure 6.19 Huygens point spread function.Figure 6.20 MTF pattern.Figure 6.21 Typical MTF plot.Figure 6.22 1951 USAF resolution test chart.
7 Chapter 7Figure 7.1 Emission from a generic source.Figure 7.2 Operation of the inverse square law.Figure 7.3 Radiance and exitance from a surface.Figure 7.4 Xenon arc lamp spectral intensity.Figure 7.5 Solar spectral irradiance.Figure 7.6 Solar spectral radiance and 5800 K blackbody radiance.Figure 7.7 Étendue of a pencil of rays.Figure 7.8 Illustration of BRDF.Figure 7.9 BRDF of Spectralon at 900 nm for normal illumination.Figure 7.10 Surface roughness.Figure 7.11 PSD for idealised polished surface (note units are in microns).Figure 7.12 Köhler illumination.Figure 7.13 Diffuser scattering profile.Figure 7.14 Integrating sphere.Figure 7.15 (a) Flux measurement. (b) Reflectance measurement.Figure 7.16 Natural vignetting.Figure 7.17 Substitution radiometer.Figure 7.18 Blackbody radiometric source.Figure 7.19 FEL lamp calibration.Figure 7.20 Luminous efficiency function.Figure 7.21 Luminous efficiency vs. blackbody temperature.Figure 7.22 Luminance vs. blackbody temperature.Figure 7.23 Colour matching curves.Figure 7.24 Standard astronomical filter response curves.
8 Chapter 8Figure 8.1 Plane polarised waves.Figure 8.2 Polarisation states (a) Linear, (b) Right hand circular, (c) Left h...Figure 8.3 Polarisation ellipse.Figure 8.4 Reflection at an interface.Figure 8.5 Reflection coefficient vs angle for n = 1.5.Figure 8.6 Induced dipole formation in refractive material.Figure 8.7 Index ellipsoid.Figure 8.8 Phase delay and propagation through a birefringent crystal.Figure 8.9 Propagation of light in a uniaxial crystal.Figure 8.10 Double refraction in calcite.Figure 8.11 Phenomenon of walk-off in birefringent crystals.Figure 8.12 Operation of half-waveplate.Figure 8.13 Common experimental configuration for quarter waveplate.Figure 8.14 Woolaston prism.Figure 8.15 Glan taylor polariser.Figure 8.16 Polarising beamsplitter cube.Figure 8.17 Wire grid polariser.Figure 8.18 (a) Optical isolator in transmission. (b) Blocking by optical isol...Figure 8.19 Application of jones matrices.Figure 8.20 Jones matrix multiplication.Figure 8.21 Twisted nematic liquid crystal.Figure 8.22 Use of stress induced birefringence to analyse patterns of stress....
9 Chapter 9Figure 9.1 Resonant dipole.Figure 9.2 Modelled index of SCHOTT BK7®.Figure 9.3 Thermal sensitivity and effect of substrate.Figure 9.4 Refractive index of air.Figure 9.5 Complex index of aluminium.Figure 9.6 Reflectivity of principal metal coatings.Figure 9.7 Reflection coefficient vs angle for aluminium at 800 nm.Figure 9.8 Band gap in semiconductors.Figure 9.9 Glass transmission vs wavelength (internal transmission for 10 mm t...Figure 9.10 Internal transmission for crystalline halides (10 mm thickness).Figure 9.11 Internal transmission for some chalcogenides (10 mm thickness).Figure 9.12 Internal transmission for some semiconductors (10 mm thickness).
10 Chapter 10Figure 10.1 Thin film reflectance at an interface.Figure 10.2 Performance of antireflection coating.Figure 10.3 Multilayer quarter wavelength stack.Figure 10.4 Multilayer stack – reflectivity vs wavelength (design wavelength 5...Figure 10.5 Transmission and reflection of a thin chromium film at 540 nm.Figure 10.6 Transmission of 4 nm chromium film vs. wavelength.Figure 10.7 Reflectivity of aluminium coatings.Figure 10.8 Performance of typical broadband antireflection coating.Figure 10.9 General characteristics of edge filters.Figure 10.10 Transmission of some WRATTEN™ filters.Figure 10.11 Bandpass filter characteristics.Figure 10.12 Typical characteristics of neutral density filters.Figure 10.13 Polarising beamsplitter.Figure 10.14 Polarising beam splitter (design wavelength 600 nm).Figure 10.15 Application of dichroic filter.Figure 10.16 Geometry of etalon filter.Figure 10.17 Etalon response function.Figure 10.18 Pressure tuned etalon.Figure 10.19 Basic bandpass filter design.Figure 10.20 Transmission for basic bandpass filter design.Figure 10.21 ‘Computer Optimised’ broadband antireflection coating performance...Figure 10.22 Evaporation process.Figure 10.23 Sputtering process.
11 Chapter 11Figure 11.1 Minimum deviation refraction produced by a prism.Figure 11.2 Anamorphic magnification by prism.Figure 11.3 Dual prism anamorphic magnifier.Figure 11.4 45° prism.Figure 11.5 Porro prism.Figure 11.6 Double Porro prism.Figure 11.7 Pentaprism.Figure 11.8 (a) Dove prism. (b) Abbe König prism.Figure 11.9 Corner cube retroreflector.Figure 11.10 Operation of diffraction grating.Figure 11.11 Diffraction pattern from grating with 10 slits.Figure 11.12 Diffraction efficiency vs order.Figure 11.13 Transmission grating.Figure 11.14 Phase grating efficiency.Figure 11.15 Diffraction for non-zero angle of incidence.Figure 11.16 Operation of reflective grating.Figure 11.17 Blazed diffraction grating.Figure 11.18 Diffraction grating in Littrow configuration.Figure 11.19 Generic efficiency curve for a blazed diffraction grating.Figure 11.20 Blazed grating showing polarisation orientations.Figure 11.21 Grating efficiency for two polarisation direc....Figure 11.22 Holographic grating profile.Figure 11.23 Echelle grating.Figure 11.24 Rowland grating arrangement.Figure 11.25 Grating prism or grism.Figure 11.26 Diffractive lens.Figure 11.27 Ruled grating replication.Figure 11.28 Fabrication of a holographic grating.
12 Chapter 12Figure 12.1 (a) Absorption. (b) Stimulated emission. (c) Spontaneous emission....Figure 12.2 Three level laser scheme.Figure 12.3 Schematic of Ruby laser.Figure 12.4 The helium neon pumping scheme.Figure 12.5 Helium neon laser.Figure 12.6 Stimulated emission in a semiconductor laser.Figure 12.7 Simplified sketch of semiconductor laser.Figure 12.8 Double heterostructure laser.Figure 12.9 Generalised representation of a laser cavity.Figure 12.10 Laser gain profile and longitudinal modes.Figure 12.11 Active mode locking.Figure 12.12 Q switched laser.Figure 12.13 Ring laser.Figure 12.14 Stable resonator geometry.Figure 12.15 Laser cavity stability.Figure 12.16 Gaussian beam and cavity geometry.Figure 12.17 Dye laser schematic.Figure 12.18 Parametric oscillator.Figure 12.19 Laser penetration depth vs. interaction time.Figure 12.20 Chart of laser materials processing applications.Figure 12.21 Laser tracking – 3D coordinate metrology.Figure 12.22 Quadrant detector.Figure 12.23 Underlying principle of holography.
13 Chapter 13Figure 13.1 Fibre propagation.Figure 13.2 (a) Step index fibre, (b) Graded index fibre.Figure 13.3 Periodic propagation in a graded index fibre.Figure 13.4 Ray paths in a focusing GRIN lens.Figure 13.5 Impact of fibre bend radius.Figure 13.6 Geometry of fibre bending.Figure 13.7 Geometrical effect of fibre bending on numerical aperture (n0 = 1....Figure 13.8 Slab waveguide.Figure 13.9 Slab waveguide (weakly guided).Figure 13.10 Modal chromaticity for example waveguide.Figure 13.11 Strongly guided waveguide.Figure 13.12 Optical fibre model.Figure 13.13 Flux distribution in single mode fibre.Figure 13.14 Dependence of U and W parameters on normalised frequency paramete...Figure 13.15 Gaussian beam