Nanopharmaceutical Advanced Delivery Systems. Группа авторов

Читать онлайн книгу.

Nanopharmaceutical Advanced Delivery Systems - Группа авторов


Скачать книгу
187–237, One Central Press Ltd, Manchester, 2014.

      84. Schubert, M. and Müller-Goymann, C., Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. Eur. J. Pharm. Biopharm., 55, 125–131, 2003.

      85. Battaglia, L., Gallarate, M., Panciani, P.P., Sapino, S., Peira, E., Chirio, D., Techniques for the Preparation of Solid Lipid Nano and Microparticles, in: Application of Nanotechnology in DrugDelivery, A.D. Sezer (Ed.), pp. 51–75, IntechOpen Limited, London, 2014.

      86. Charcosset, C., El-Harati, A., Fessi, H., Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release, 108, 112–120, 2005.

      87. Hou, D., Xie, C., Huang, K., Zhu, C., The production and characteristics of solid lipid nanoparticles (SLN). Biomaterials, 24, 1781–1785, 2003.

      88. Liu, J., Gong, T., Wang, C., Zhong, Z., Zhang, Z., Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles. Preparation and characterization. Int. J. Pharm., 340, 153–162, 2007.

      89. Li, Y., Taulier, N., Rauth, A.M., Wu, X.Y., Screening of lipid carriers and characterization of drug-polymer complex for the rational design of polymer-lipid hybrid nanoparticles. Pharm. Res., 23, 1877–1887, 2006.

      90. Mehnert, W. and Mader, K., Solid lipid nanoparticles. Production, characterization and applications. Adv. Drug Deliv. Rev., 47, 165–196, 2001.

      91. Pecora, R., Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res., 2, 123–131, 2000.

      92. Heurtault, B., Saulnier, P., Pech, B., Proust, J.E., Benoit, J.P., Physico-chemical stability of colloidal lipid particles. Biomaterials, 24, 4283–4300, 2003.

      93. Zimmermann, E. and Muller, R.H., Electrolytes- and pH-stability of aqueous solid lipid nanoparticles (SLN) dispersion in artificial gastrointestinal media. Eur. J. Pharm. Biopharm., 52, 203–210, 2001.

      94. Videira, M.A., Botelho, M.F., Santos, A.C., Gouveia, L.F., de Lima, J.J., Almeida, A.J., Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Targeting, 8, 607–613, 2002.

      95. Lin, P.C., Lin, S., Wang, P.C., Sridhar, R., Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 32, 711–726, 2014.

      96. Liu, X., Dai, Q., Austin, L., Coutts, J., Knowles, G., Zou, J. et al., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc., 130, 2780–2782, 2008.

      97. Brar, S.K. and Verma, M., Measurement of nanoparticles by light-scattering techniques. Trends Analyt. Chem., 30, 4–17, 2011.

      98. Hall, J.B., Dobrovolskaia, M.A., Patri, A.K., McNeil, S.E., Characterization of nanoparticles for therapeutics. Nanomedicine (Lond.), 2, 789–803, 2007.

      99. Kumar, R., Siril, P.F., Soni, P., Preparation of nano-RDX by evaporation assisted solvent antisolvent interaction. Propellants Explos. Pyrotech., 39, 383–389, 2014.

      100. Kumar, R., Siril, P.F., Soni, P., Optimized synthesis of HMX nanoparticles using antisolvent precipitation method. J. Energ. Mater., 33, 277–287, 2015.

      101. Su, D., Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ., 2, 2, 70–83, 2017.

      103. Bibi, S., Kaur, R., Henriksen-Lacey, M., McNeil, S.E., Wilkhu, J., Lattmann, E. et al., Microscopy imaging of liposomes: from coverslips to environmental SEM. Int. J. Pharm., 417, 138–150, 2011.

      104. Rissi, N.C., Guglielmi, D.A.S., Corrêa, M.A., Chiavacci, L.A., Relationship between composition and organizational levels of nanostructured systems formed by Oleth 10 and PPG-5-Ceteth-20 for potential drug delivery. BJPS, 50, 653–661, 2014.

      105. Eaton, P. and West, P., Atomic force microscopy, Oxford University Press, United Kingdom, 2010.

      106. Hanley, S.J. and Gray, D.G., Atomic force microscopy, CRC Press Inc., Boca Raton, FL, 1995.

      107. Xu, R., Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology, 6, 112–115, 2008.

      108. Chorom., M. and Rengasamy, P., Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. Eur. J. Soil Sci., 46, 657–665, 1995.

      109. Wendlandt, W.W., Thermal methods of analysis, Wiley-Interscience, New York, 1974.

      110. Kumar, D., Kapoor, I.P., Singh, G., Siril, P.F., Tripathi, A.M., Preparation, characterization, and catalytic activity of nanosized NiO and ZnO: part 74. Propellants. Explos. Pyrotech., 36, 268–272, 2011.

      111. Kumar, R., Siril, P.F., Soni, P., Tuning the particle size and morphology of high energeticmaterial nanocrystals. Def. Technol., 11, 382–389, 2015.

      112. Chauhan, H., Mohapatra, S., Munt, D.J., Chandratre, S., Dash, A., Physical-Chemical Characterization and Formulation Considerations for Solid Lipid Nanoparticles. AAPS Pharm. Sci. Tech., 17, 640–651, 2016.

      113. Stuart, B., Infrared spectroscopy, pp. 1–20, Wiley Online Library, Germany, 2005.

      114. Kumar, R., Siril, P.F., Javid, F., Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C, 69, 1335–1344, 2016.

      115. Suryanarayana, C. and Norton, M.G., X-ray diffraction: a practical approach, Springer Science & Business Media, Germany, 2013.

      116. Esposito, E., Mariani, P., Drechsler, M., Cortesi, R., Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo-TEM), in: Handbook of Nanoparticles, M. Aliofkhazraei (Ed.), Springer, Cham, 2016.

      117. Faix, O., Fourier transform infrared spectroscopy, in: Methods in lignin chemistry, pp. 233–241, Springer, Germany, 1992.

      118. Kumar, R. and Siril, P.F., Enhancing the solubility of fenofibrate by nanocrystal formation and encapsulation. AAPS Pharm. Sci. Tech., 19, 284–292, 2018.

      119. Nekkanti, V. and Kalepu, S., Recent Advances in Liposomal Drug Delivery: A Review. Pharm. Nanotechnol., 3, 35–55, 2015.

      120. Khan, I., Kumar, H., Mishra, G., Gothwal, A., Kesharwani, P., Gupta, U., Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer. Curr. Pharm. Des., 23, 5315–5326, 2018.

      121. Dong, Y.D., Tchung, E., Nowell, C., Kaga, S., Leong, N., Mehta, D. et al., Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J. Liposome Res., 29, 1–9, 2019.

      122. Hua, S. and Wu, S.Y., The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol., 4, 143, 2013.

      124. Ghasemiyeh, P. and Mohammadi-Samani, S., Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 13, 288–303, 2018.

      125. Tabatt, K., Sameti, M., Olbrich, C., Müller, R.H., Lehr, C.M., Effect of cationic lipid and matrix lipid composition on solid


Скачать книгу