Nanopharmaceutical Advanced Delivery Systems. Группа авторов

Читать онлайн книгу.

Nanopharmaceutical Advanced Delivery Systems - Группа авторов


Скачать книгу
57, 155–162, 2004.

      126. Pedersen, N., Hansen, S., Heydenreich, A.V., Kristensen, H.G., Poulsen, H.S., Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur. J. Pharm. Biopharm., 62, 155–162, 2006.

      127. Fatouh, A.M., Elshafeey, A.H., Abdelbary, A., Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des. Devel. Ther., 11, 1815–1825, 2017.

      128. Khosa, A., Reddi, S., Saha, R.N., Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 103, 598–613, 2018.

      129. Song, S., Mao, G., Du, J., Zhu, X., Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv., 23, 1404–1408, 2016.

      130. Blasi, P., Giovagnoli, S., Schoubben, A., Ricci, M., Rossi, C., Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev., 59, 454–477, 2007.

      131. Ahmad, N., Ahmad, R., Alam, M.A., Samim, M., Iqbal, Z., Ahmad, F.J., Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int. J. Biol. Macromol., 88, 320–332, 2016.

      132. Fenske, D.B. and Cullis, P.R., Entrapment of small molecules and nucleic acid-based drugs in liposomes. Methods Enzymol., 391, 7–40, 2005.

      133. Lovelyn, C. and Attama, A.A., Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol., 2, 626–639, 2011.

      134. Shalaev, E., Wu, K., Shamblin, S., Krzyzaniak, J.F., Descamps, M., Crystalline mesophases: Structure, mobility, and pharmaceutical properties. Adv. Drug Deliv. Rev., 100, 194–211, 2016.

      135. Descamps, G., Wattiez, R., Saussez, S., Proteomic study of HPV-positive head and neck cancers: Preliminary results. Biomed. Res. Int., 2014, 430906, 2014.

      136. Wang, L., Cho, H., Lee, S.H., Lee, C., Jeong, K.U., Lee, M.H., Liquid crystalline mesophases based on symmetric tetrathiafulvalene derivatives. J. Mater. Chem., 21, 60–64, 2011.

      137. Shankar, R., Rowe, C., Van Hoorn, A., Henley, W., Laugharne, R., Cox, D. et al., Under representation of people with epilepsy and intellectual disability in research. PLoS One, 13, e0198261, 2018.

      138. Yu, S., Bi, X., Yang, L., Wu, S., Yu, Y., Jiang, B. et al., Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J. Biomed. Nanotechnol., 15, 6, 1135–1148, 2019.

      139. Barba, A.A., Bochicchio, S., Dalmoro, A., Lamberti, G., Lipid delivery systems for nucleic-acid-based-drugs: From production to clinical applications. Pharmaceutics, 11, E360, 2019.

      140. Tabernero, J., Shapiro, G.I., LoRusso, P.M., Cervantes, A., Schwartz, G.K., Weiss, G.J. et al., First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov., 3, 406–417, 2013.

      141. Jayaraman, M., Ansell, S.M., Mui, B.L., Tam, Y.K., Chen, J., Du, X. et al., Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo. Angew. Chem., 124, 8657–8661, 2012.

      143. Frank-Kamenetsky, M., Grefhorst, A., Anderson, N.N., Racie, T.S., Bramlage, B., Akinc, A. et al., Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA, 105, 11915–11920, 2008.

      144. Tolcher, A.W., Papadopoulos, K.P., Patnaik, A., Rasco, D.W., Martinez, D., Wood, D.L. et al., Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. J. Clin. Oncol., 33, 11006–11006, 2015.

      145. Flisiak, R., Jaroszewicz, J., Łucejko, M., siRNA drug development against hepatitis B virus infection. Expert Opin. Biol. Ther., 18, 609–617, 2018.

      146. Haque, A., Hober, D., Blondiaux, J., Addressing therapeutic options for Ebola virus infection in current and future outbreaks. Antimicrob. Agents Chemother., 59, 5892–8902, 2015.

      147. Landen, C.N., Chavez-Reyes, A., Bucana, C., Schmandt, R., Deavers, M.T., Lopez-Berestein, G. et al., Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res., 65, 6910–6918, 2005.

      148. Niu, Z., Conejos-Sánchez, I., Griffin, B.T., O’Driscoll., C.M., Alonso, M.J., Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Deliv. Rev., 106, 337–354, 2016.

      149. Sarmento, B., Martins, S., Ferreira, D., Souto, E.B., Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine, 2, 743–749, 2007.

      150. Fan, T., Chen, C., Guo, H., Xu, J., Zhang, J., Zhu, X. et al., Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur. J. Pharm. Biopharm., 88, 518–528, 2014.

      151. Hu, F.Q., Hong, Y., Yuan, H., Preparation and characterization of solid lipid nanoparticles containing peptide. Int. J. Pharm., 273, 29–35, 2004.

      152. Yang, R., Gao, R., Li, F., He, H., Tang, X., The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev. Ind. Pharm., 37, 139–148, 2011.

      153. Yuan, H., Jiang, S.P., Du, Y.Z., Miao, J., Zhang, X.G., Hu, F.Q., Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf. B Biointerfaces, 70, 248–253, 2009.

      154. Kashanian, S. and Rostami, E., PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J. Nanopart. Res., 16, 2293, 2014.

      155. Christophersen, P.C., Zhang, L., Yang, M., Nielsen, H.M., Müllertz, A., Mu, H., Solid lipid particles for oral delivery of peptide and protein drugs I—Elucidating the release mechanism of lysozyme during lipolysis. Eur. J. Pharm. Biopharm., 85, 473–480, 2013.

      156. Bakala-N’Goma, J.C., Williams, H.D., Sassene, P.J., Kleberg, K., Calderone, M., Jannin, V. et al., Toward the establishment of standardized in vitro tests for lipid-based formulations. 5. lipolysis of representative formulations by gastric lipase. Pharm. Res., 32, 4, 1279–1287, 2015.

      157. Kisel, M.A., Kulik, L.N., Tsybovsky, I.S., Vlasov, A.P., Vorob’yov, M.S., Kholodova, E.A. et al., Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: Studies in the rat. Int. J. Pharm., 216, 105–114, 2001.

      158. Thirawong, N., Thongborisute, J., Takeuchi, H., Sriamornsak, P., Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J. Control. Release, 125, 236–245, 2008.

      159. Kowapradit, J., Apirakaramwong, A., Ngawhirunpat, T., Rojanarata, T., Sajomsang, W., Opanasopit, P., Methylated N-(4-N,N-dimethylaminobenzyl) chitosan coated liposomes for oral protein drug delivery. Eur. J. Pharm. Sci., 47, 359–366, 2012.

      161. Li, H., Jun, H.A., Park, J.S., Han, K., Multivesicular liposomes for oral delivery of recombinant human epidermal growth factor. Arch. Pharm. Res., 28, 988–994, 2005.

      162. Parmentier, J., Thewes, B., Gropp, F., Fricker, G., Oral peptide delivery by tetraether lipid liposomes.


Скачать книгу