Engineering Solutions for CO2 Conversion. Группа авторов

Читать онлайн книгу.

Engineering Solutions for CO2 Conversion - Группа авторов


Скачать книгу
industrial processes because of the inherent variability of the industrial process operations, such as in primary steelmaking [65]. The main strategies proposed for power plants with a carbon capture system can be summarized as follows:

       Allowing the thermal power plant to follow load changes. The capture unit follows the power plant load change [58, 59].

       Varying the CO2 capture rate, depending on CO2 costs and electricity prices [51]. In such case, the solvent regeneration is variable, using the large amount of loading capacity and large inventories of solvent as CO2 storage [66]. At times with high electricity prices, the steam is used for power production, while the regeneration takes place at low electricity prices.

       Turning on‐and‐off the capture unit or flue gas bypass. The flue gases sent to the capture unit are bypassed to the stack of the power plant so that partial or no CO2 is being captured. Part of the flue gas is vented to the atmosphere. This allows part of the steam used for solvent regeneration to be used for power production in the steam turbine. This option might be viable in scenarios in which CO2 emission costs or prices are low.

       Providing solvent storage to decouple plant operation from the capture unit. The capture rate is kept constant and the solvent is stored in tanks. The regeneration energy is shifted to times when electricity prices are low. Solvent storage can incur in significant capital expenditure required for solvent storage, which could be favorable in scenarios with high CO2 emission costs.

      The industrial sector was responsible for almost 25% of the CO2 emissions in 2014. CO2 is emitted on the fuel combustion, intrinsic reactions and indirectly on the use of electricity. IEA predicted a required reduction on the CO2 emissions of 3–6 Gt/yr to achieve the 2 degrees scenario (2DS) or B2DS. Although other measures such as increasing energy efficiency, developing new production process, using renewable energy or fuel switching, will reduce CO2 emissions, still there is a significant amount of CO2 from the process that can be only reduced through CO2 capture [20]. To achieve the B2DS, the contribution of CCS is estimated as 23%.

      All the available CO2 capture technologies can be potentially installed in industrial facilities. However, while certain industries would have similar or even more favorable characteristics for the implementation of carbon capture utilisation and storage (CCUS) compared to power plants, the design of CO2 capture systems must be tailored for each facility. The heat and energy integration will be site specific and, together with the composition and CO2 emission stacks, will impact on the optimum capture rate and the CO2 avoidance cost.

      Other sectors such as refining, hydrogen, natural gas, heavy oil, fertilizer productions, and waste‐to‐energy are important and are being considered for further study, for example, by the CSLF.

      In this chapter, the main CO2 capture systems applied to the industrial and power sectors have been described, covering a wide range of TRLs. Chemical absorption as post‐combustion arrangement was further discussed, including advanced process configurations and its integration in the power plant and electricity grid.

Schematic illustration of the review of current TRL of different CO2 capture technologies.

      1 1 Masson‐Delmotte, V., Zhai, P., Pörtner, H.‐O. et al. (eds.) (2018). IPCC, 2018: summary for policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre‐industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Geneva, Switzerland, 32 pp.: World Meteorological Organization.

      2 2 Giannaris, S., Jacobs, B., Srisang, W. et al. (2019). Heat integration analysis and optimization for a post combustion CO2 capture retrofit study of SaskPower's Shand Power Station. Int. J. Greenhouse Gas Control 84: 62–71.

      3 3 Rock, L., McNaughton, C., Black, A. et al. (2017). Assessment of CO2 levels prior to injection across the quest sequestration lease area. Energy Procedia 114: 2836–2846.

      4 4 Allam, R., Martin, S., Forrest, B. et al. (2017). Demonstration of the Allam


Скачать книгу